R.S.B.

)
Disk BASIC for Level 2 0S9
Version 1.02
)
Copyright 1989 by Burke & Burke
P.O. Box 58342
Renton, WA 98058

Al Rights Reserved

RSB User's Manual Version 1.0

PUBLISHED BY BURKE & BURKE
P.O. BOX 1283
PALATINE, IL 60078-1283

COPYRIGHT NOTICE

All rights reserved. Neo part of this
manual may be reproduced, copied, or
transmitted in any form without prior

written permission from Burke & Burke.

This entire manual, any acccompanying
hardware or computer programs, and any
accompanying information storage media
constitute a PRODUCT of Burke and Burke.
The PRODUCT is supplied for the personal
use of the purchaser. Burke & Burke
expressly prohibits reproduction of this
manual, the accompanying computer programs,
ind the printed circuit artwork.

Burke & Burke expressly requires, as a
condition of providing this PRODUCT and the
associated LIMITED WARRANTY to the
PURCHASER, that one copy of the PRODUCT be
purchased from Burke & Burke for every copy
used.

Burke & Burke does not in any way
transfer ownership of any computer programs
to the PURCHASER. The PURCHASER is granted
a limited license to use Burke & Burke
computer programs distributed with the
product, but only on a single computer.

TTLIMITED WARRANTY

Burke & Burke warrants the PRODUCT

Copyright 1988 Burke & Burke

R5B User’'s Manual Vversion 1.0

against defects in material or workmanship
for a period of ninety (90) days from the
date of purchase by the original owner.
This warranty is 1limited to repair or
replacement of PRODUCT which proves to be
defective during this period, at the sole
expense and discretion of Burke & Burke.
This warranty specifically excludes defects
in software and defects caused by abuse,
negligence, accident, or tampering.

DISCIL.AIMER

Every effort has been made to ensure
the accuracy of this manuval and the gquality
of the PRODUCT it describes. Burke & Burke
makes no warranties, whether expressed,
statutory., or implied, of any kind
whatscever, as to the merchantability of
the PRODUCT or it's fitness for a
particular use, except as set forth above
as the LIMITED WARRANTY.

Burke & Burke does not assume any
liability for any damages, whether special,
indirect, or consequential, resulting from
the use of the PRODUCT. The PRODUCT is sold
on an AS-IS basis.

TRADEMARKS

Disk Extended Color BASIC 1is a copy-
righted software product of Microsoft and
Microware Systems Corporation, licensed to
Tandy Corporation. Color Computer and CoCo
are trademarks of Tandy Corporation.

Copyright 1988 Burke & Burke

T

RSB User's Manual Version 1.0

TN S S T S e e e e — L ey T —— oy o = —— o

L M R e v T S M o e ey ——— A i > o A e e

Chapter 1 / Introduction
Required Eguipment
Installation
Using RSB
Available Options

Chapter 2 / General Information
Direct vs Run Mode
Entering a Program
Editing a Program
Program Execution
Saving Programs
Leaving RSB

Chapter 3 / Data and Variables
Numeric Data
String Data
Simple Variables
Array Variables

Chapter 4 / Expressions
Arithmetic Operators
Relational Operators
Logical Cperators
String Operators
Operator Precedence
Functions

Chapter 5 / Files
Drive Numbers
Sequential Files
Random Access Files
Devices as Files

Copyright 1988 Burke & Burke Contents

KopPp vsel 5 manual version 1.v

Chapter 6 / Text., Graphics, and Sound
Text Attributes
Block Graphics
Low-Res Graphics
High-Res Graphics
No~Halt Sound

Appendix A / Command Reference
Appendix B / Error Messages
Appendix C / The RSB Environment File

Appendix D / Programmer's Notes
Internal Operation
Memory Map
Cassette Format

Appendix E / 0S9 Utilities
Importing and Exporting Files (HCOPY)
Deleting BASIC files (HDEL)
BASIC Directory (HDIR)
Splitting & Disk (SKITZ0)
Setting the Screen Width (WIDTH)

Copyright 1988 Burke & Burke Contents

S

RSP User’'s Manual Version 1.0

Chapter 1

D AT I A . ———— A — — — i g o —) . V. i L i ——

A S e i e T i e S b o Y T —— —— - ——A——— _ e — = v

R.5.B. is a full 0S89 adaptation of Disk
Extended Color BASIC (DECB) for 0S9 Level) 2
running on the Color Computer 3.

Color Computer wusers will benefit from
RSB's familiar command syntax and excellent
compatibility with existing BASIC software.
Advanced 0S9 programmers will find that RSB
is an excellent tool for rapid deveIOpment
of portable software.

- RSB is a version of Disk Extended Color
BASIC that has been modified for compatibi-
lity with Level 2 059. Key features of RSB
include:

* Fully re-entrant: BASIC prorams may be
run in several windows simultaneously.

* Fully relocatable.

* Command syntax is identical to Disk
Extended Color BASIC.

* Accepts commands in either wupper or
lower case.

* All I/0, including disk, graphics and
sound, uses 059 system calls.

* VDG graphics commands work on both VDG
screens and Level 2 windows.

Copyright 1988 Burke & Burke Page 1-1

RSB User's Manual Version 1.0

* High~resolution graphics.

»* Tandy Color Mouse or Deluxe Color Mouse
can be used in place of joysticks.

* Multi-Vue compatibla.

* New commands give BASIC programs direct
access to 059.

This manual describes how to use RSB,
and provides information about how 0S89 and
" RSB interact. Nonetheless, the manual does
not attempt to teach BASIC programming or
the use of 0859. If you are not familiar
with programming in Disk Extended Color
BASIC, refer to Tandy's Color Computer 3
Extended BASIC and Color Computer Disk
System reference manuals.

Required Eguipment

The following equipment is required by

* Tandy Color Computer 3 (128K minimum)

* Television or Monitor

hd Disk Drive

hd 059 Level 2 Operating System

* Floppy disk controller with one of the
following ROM's installed:

a) Tandy Disk Extended Color BASIC 1.0

or
b) Tandy Disk Extended Color BASIC 1.1
or '
¢) Tandy Disk Extended Color BASIC 2.0
or

Copyright 1988 Burke & Burke Page 1-2

e,

RSB User's Manual Version 1.0
d) Tandy Disk Extended Color BASIC 2.1

or
e) DISTO CoCo 3 CDOS Disk BASIC

The following equipment is optional.

" Using some or all of this equipment will

enhance the operation of RS58:

Printer

Second disk drive

Joystick(s) or mouse
Speech/Sound PAK or Super Voice
R5-232 PAK

Hard disk system

Multi-Vue environment (512K)
512K RAM

* * * % % % * ¥

Although RSB will run in 128K of RAM, Burke
& Burke strongly recommends that you use
512K for best performance.

InNnstallaeacion

There are two steps to installing RSB
on your Color Computer 3:

1) Run the INSTALL procedure to create
an executable copy of RSB.

2} Edit the RSB environment file to
tailor RSB to your hardware.

RSB is distributed on two diskettes:
the INSTALLATION DISK, and the DEMO / UTIL-
ITIES DISK. Neither disk is copy protected.
Before starting to install RSB, you should

make a backup copy of each disk and store

the originals in a safe place. USE THE
ORIGINAL RSB DISKS ONLY TO CREATE A BACKUP

Copyright 1988 Burke & Burke Page 1-3

RSB User's Manual Version 1.0
COPY.

The RSB distibution disks don't include
an executable copy of RSB. 1Instead, the
INSTALL procedure file builds an executable
copy of RSB from the data in your Color
Computer's BASIC and DISK BASIC ROMs. Once
you have an executable copy of RSB, you can
run RSB directly (without repeating the
installation procedurae).

It takes all of your Color Computer's
resources to read the ROMs when INSTALL is
running., so be sure that you don't have any
applications running in other windows. You
must also run INSTALL from a true window.
not a 32 column VDG window. If you don't
normally use true windows, you can <create
one by entering the commands:

0S9:shell i=/w7& [ENTER]
XXX
059: [CLEAR]

You should see a screen with the word Shell
and the 0S9: prompt in the upper left-hand
corner.

To create an executable copy of RSB,
from a true window, with no other programs
running, 1insert a BACKUP COPY of the RSB
INSTALLATION disk in drive 0 and enter:

0s59:chd /40

059:chx_ /doO

O59:install

RSB Installation in Progress . . .
Modifying BASIC 2.X . . .
Installation complete.

You will see a lot of disk activity., and

Copyright 1988 Burke & Burke Page 1-4

o

/

C

—

KbLE user s mMmanual version 1.0

may see a flashing black bar at the bottom
of your screen (the flashing bar indicates
that the installation program is accessing
your Color Computer's ROMs).

The INSTALL program takes about 10
minutes to run. When it finishes, there
will be an executable copy of RSB in the
root directory of drive /do.

The RSB program is stored in a file
called RSB. You can copy RSB to a working
system disk, or can run the program right
from the installation disk.

To copy the RSB program tc & system
disk, place the system disk in drive 1 and
enter the commands:

059:copy /d0/rsb /dl/cmds/rsb
0S9:copy /d0/sys/rsb_env.file /dl/sys/
rsb_env.file

Be sure to use a system disk with enough
room on it {(you need at least 260 free
clusters), and be sure tc create the SYS
directory on the system disk if it isn't
there already.

RSB is supplied configured for use with
typical Color Computer 3 systems. If you
have a hard disk, mouse, or other advanced
hardware, you may want to edit the RSB
environment file so that RSB will access
these devices. See Appendix C for further
information on the RSB environment file.

Using RSB

RSB is an 059 command program. You can

Copyright 1988 Burke & Burke Page 1-5

RSB User's Manual Version 1.0

run RSB from the 059 Shell, Multi-Vue, a
Shell procedure file, or another program.
The c¢ommand line used to start up RSB looks
like this:

RSB options program_name #memory_size

All of the arguments are optional. If no
arguments are specified, RSB comes up in
Direct Mode with about SK of RAM available
for program and data storageé.

The options argument lets you enable or
disable certain features of RSB (such as
VDG graphics).

The program name argument specifies the
059 path ¢to a file that you want RSB to
load and execute automatically. If the
file does not exist, RSB generates an error
message and ccmes up in Direct Mode.

The memory size argument tells the 059
Shell how much RAM to give RSB for program
and variable storage. The default value of
this argqument is BK. Whatever argument is
supplied, RSB uses the first 3k of RAM for
its internal variables.

Available Options

Options are specified on RSB's command
line using the prefix ‘'-'. The available
options are:

-g Disables allocation of a VDG
graphics screen at RSB startup.
Specifying this option saves
6K of RAM, but also disables
graphics on VDG windows. Note

Copyright 1988 Burke & Burke Page 1-6

(
(

r—

ROD Vel > Mmanuas version i.0

that PMODE graphics will still
work on true windows even when
the -g option is specified.

EXAMPLES:

rsb -g #20K

Does not allocate a VDG graphics screen
but allocates 20K of RAM to RSB. About
17K of this RAM will be available for
program and variable storage.

rsk /d0/basic/payroll.bas

Tells RSB to run the payroll.bas

program, which 1is in the directory

/d0/basic.

Copyright 1988 Burke & Burke Page 1-7

RSB User's Manual Version 1.0

Chapter 2

A A e s o — AN, 7 il iy T - v . A = — =

RSB is an interpreter for a dialect of
the BASIC computer programming language.
The specific dialect, Disk Extended Color
BASIC (DECB), was originally developed for
stand-alone use in the Tandy Color Computer
3.

Most DECB programs run under RSB with
no changes. Throughout this manual, the
term BASIC 1is used to refer to either RSB
or Disk Extended Color BASIC.

Direct s Run Mode

You are always in one of two operating
modes when using RSB: Direct Mode (program
editing, command execution) or Run Mode
{BASIC program execution).

Direct Mode lets you enter commands
that 1load, save, create, modify, erase, or
run programs. Typical direct mode commands
are:

load "quack.bas"
lise 100-220

tron

copy “"test.dat" to "test.bak"
del 9000~

run

Copyright 1988 Burke & Burke Page 2-1

RSB User's Manual Version 1.0

RSB is in Direct Mode whenever it is not
executing a program.

In Run Mode, RSB executes programs that
you or another programmer have loaded into
the Color Computer. RSB chooses what it
will do next automatically, based on the
program, instead of waiting for you to type
in a command.

Once RSB enters Run Mode., it remains
there until the computer encounters an

instruction that tells it to return to

Direct Mode.

If a program is running and you need to
regain control of RSB right away, you can
often do so by depressing the BREAK key.

Entering a Program

BASIC programs are divided into lines.
Each line begins with a unique line number

which must be an integer between 0 and
63999. ‘

You enter a program by typing in all of

the lines. No matter what order you type
the 1lines in, RSB always arranges them
from lowest to highest line number. For

example, the typing sequence:
20 print "any lines to be"
10 print "RSB won't allow"
36 print "out of order."”
results in the program:
10 PRINT "RSB won't allow”
20 PRINT "any lines to be"

Copyright 1988 Burke & Burke Page 2-2

RSB User's Manual Version 1.0
30 PRINT "out of order."

Notice that RSB also converts lower-case
command names to upper case.

Editing & Program

_ When you enter a line in Direct Mode,
which begins with a line number, that line
will modify the BASIC program in one of
several ways.

If you have not already entered a line
with this 1line number, the new line is
inserted into the BASIC program just after
the line with the next lower line number.

Entering just a lire number, with no
other data on the line, tells RSB to delete
any line with that 1line number from the
BASIC program.

If you enter a line that begins with
the 1line number of an existing line, and
there is data after the line number, RSB
replaces the old line with the new line.

You can alsc use RSB's EDIT command to
modify an existing }line without retyping
it. The EDPIT command allows you to insert,
delete, or replace text in any line of the
BASIC program.

Program ExXxecution
The RUN command causes RSB to leave
Direct Mode and enter Run Mode. Once RSB

enters Run Mode, it remains there until the
program has finished executing.

Copyright 1988 Burke & Burke Page 2-3

RSB User's Manual Version 1.0

For BASIC programs, execution always
begins at the lowest numbered 1line and
continues from line to line in sequenctial
order unless a BASIC statement (e.g. GOTO)
changes the order.

The RUN command allows you tO éxecute
either the BASIC program that is in memory.
or a BASIC program stored in a disk file.
For example., the command:

run

will execute the program that is in memory.
To execute a program stored in a disk file.,
use:

run "program;:3"

This example will load and run the program
called program.bas that is stored in disk
directory #3. Note that specifying a
program name in the RUN command will erase
any BASIC program already in memory.

RSB also provides a special form of the
RUN command that allows you to call any OS¢
command as a subroutine from within a BASIC
program. For example, the program line:

1000 RUN "Sfree /dO"

will execute the 059 FREE command from
within a BASIC program.

Since RSB is alsc an 059 command., you
can even call one BASIC program frem within
another. A typical example would be:

1000 RUN "sSrsb /d0/basic/menus.bas #8K"

Copyright 1988 Burke & Burke Page 2-4

RSB User's Manual Version 1.0

Saving Programs

RSB will save programs in either ASCII
or tokenized format. When loading a
program, RSB automatically adapts to either
format by examining the first two bytes of
the file.

To save a program in tokenized format,
use the normal form of the SAVE command:

save "program"

To save a program in ASCII format, add an
'‘A' after the SAVE command as follows:

save "program",A

Programs saved in ASCII format usually
take up more disk space than tokenized
progams. The advantage of ASCII format is
that ASCII files are compatible with text
editors and other software packages.

Leaving RSB

When you are done using RSB, you can
return to the 0S9 prompt by entering the
bOsS command.

NOTE: The DOS command - does not save
the BASIC program that is in memory. If
you do not wish to lose the BASIC program
that is in memory, be sure to SAVE it
before using the DOS command.

Copyright 1988 Burke & Burke Page 2-5

——

RSB User's Manual Version 1.0

Chapter 3

A ——— — T U U S Tt e o T VI T T Y= ——— — . = — P —

Data and variables are the two classes
of objects that RSB programs manipulate.

Each «c¢lass has two types: numeric, and
string.
RSB can alsco manipulate groups of

related variables, in the form of arrays.

NMumeric Data

RSB allows you to represent numbers in
BASIC programs as decimal, hexadecimal, or
octal constants.

Decimal constants may be entered in
integer, floating-point, or scientific
notation. Here are some examples:

123456789 (integer)
3.31415%9 (floating-point)
-1.228E+6 (scientific)

Numbers larger than 999,999,999 or smaller
than 0.01 are automatically displayed in
scientific notation. The largest decimal
number that RSB will accept is +1E+38, and
the smallest positive (non-zero) number is
+3E-39.

Hexadecimal constants are indicated by

a leading &H symbol, and are always integer

Copyright 1988 Burke & Burke P&ge 3-1

RSB User's Manual version 1.0

values. A hexadecimal constant may have as
many as 6 digits, SO you can represent any
number between 0 and 16,777,215. Typical
hexadecimal constants are:

&HFF {255)
&H4000 (16384)
&HFFFFFF (16,777,215)

Octal constants are indicated by a & or
&0 symbol, and are also always integer
valuas. An octal constant may have as many
many as 8 digits, giving the same range of
values as with hexadecimal constants. Here
are some octal constants:

&377 (255)
&012 (10)
&077777777 (16,777,215)

Regardless of how you enter a numeric
constant, it is always converted to binary
scientific notation before RSB pserforms any
operation on it.

Scring Data

A string is an ordered list of from 0
to 255 8~bit values. Strings may be used
to represnt ASCII text, machine language
programs, register values, or arbitrary
binary data.

Strings are usvally used to represent
textc. RSB wllows you to define text
strings easily, by enclosing the text in
quotation marks. Here are some typical
string constants: ‘

"string constant"

Copyright 1988 Burke & Burke Page 3-2

KobB user ' s mMmanual version 1.0

"ABCEDFGHIJKLMNOPORSTUVWKYZ"
" JANFEBMARAPRMAY JUNJULAUGSEPOCTNOVDEC

Notice that the <closing quotation mark
has been left off of the third example.
RSB lets you leave off the closing quote
at the end of a line, as a short-cut.

Simple Variables

A simple variable is a storage place
for a single text or numeric value. The
value may be a constant, or may be the
result of a calculation.

Every variable has a name and a type.
The two-character name must begin with a
letter (A-Z), but the 'second character
may be either a letter or a digit (0-9).
Certain names, 1like TO and AS, are not
allowed because they conflict with a
pre-defined RSB command word. Aside from
these rules, you can choose any variable
names that you like.

RSB will ignore any characters that
come after the first two in a variable
name. This allows you to make programs
more understandable by using meaningful
variable names. Consider which ¢of these
calculaticons is easier to understand:

T = .04 * B
TAX = .04 * BALANCE

The disadvantage of long variable names
is that they make the program longer.

The type of a variable is assumed to
be numeric, unless you specify a string

Copyright 1988 Burke & Burke Page 3-3

RSB User 's Manual version 1.0

variable by placing a §$ character at the
end of the variable name. For example,

AX {numeric variable)
AXS (string variable)

"Each numeric variable can store any
legal numeric value, and you can change
the value of a numeric variable at any
time.

Each string variable can store any
number of characters between ¢ and 255.
You can c¢hage the length of a string
variable at any time.

Array Variables

An array is an ordered 1list of
objects, much like a string. The objects
that make up an array may be either
numbers or strings.

Every array has a name and a type, as
with simple variables. Unlike simple
variables, arrays also have dimensions
and extents.

Arrays may have up to 255 dimensions.,
but the total number of array elements is
limited by the amount of RAM allocated to
RSB.

An array name is identified by a list
of subscripts enclosed in parenthesis.
Typical aray names are:

BOARD(1,5) (numeric array)
DOCS$(37) (string array)

Copyright 1988 Burke & Burke Page 3-4

Pl

~—

ROoOD vVoweLl s rmanua L YVRLIALDIL LV

If RSB encounters an array that has not
been defined with the DIM statement, it
defaults the size of the array to one
dimension with an extent of 11 elements.

Array subscripts begin at zero, and
include the number specified as the
extent of each dimension in the DIM
statement. For example.

DIM A(22)

defines a 23 element array with elements
numbered from 0 to 22.

Copyright 1988 Burke & Burke Page 3-5

RSB User's Manual Version 1.0

Chapter 4

i — S i b Sy e e e i S VY e o Y T — T — —— T}

s ki e e . —————————] W) Sy — —— . ——

You define calculations to RSB by
including expressions in your programs. An
expression is a combination of operators
and operands.

Both data and variables {(see Chapter 3)
are operands. An entire expression, when
enclosed in parenthesis, is also an operand
to RSB.

The operators in an expression specify
the type of calculation that R3B will
perform on the operands. Typical operators
specify addition, division, assignment,
comparison, or other similar calculations.

Each operator has a precedence, which
determines the order in which operations
in an expression will be performed. A high-
precedence operator may be evaluated prior
to one with 1lower precedence, even though
the low-precedence operator occurs first in
an expression. This is explained in the
Operateor Precedence saction of Chapter 4.

Arithmectcic Operators
These operators perform mathematical
calculations, and may onhly be used on

numeric operands. There are two types of
arithmetic operators: binary and unary.

Copyright 1988 Burke & Burke Page 4-1

RSB User's Manual Version 1.0

Binary operators produce a result from two
operands; unary operators produce a result
from a single operand.

The binary arithmetic operators are: {
ne?

= Assignment

+ Addition

- Subtraction

* Multiplication

/ Division

Exponentiation
Except for the assignment operator. all of
the binary arithmetic operators are
evaluated from left to right. For example,

C+B - A

is calculated as (C+B} - A, rather than as
C + {(B-A}. But.,

A =B = (C

assigns the value of C to B, and then the
new value of B to A. Note, however, that

A = (B=C)
will compare B to C, and set A according to
the result. You cannot use the assignment
operator inside of parenthesis.

The unary arithmetic operators are:

+ Assertion (no effect)
- Naegation (change sign)

These operators are evaluated from right to ¢
left. For example., the expression: ~

Copyright 1988 Burke & Burke Page 4-2

R5B User's Manual Version 1.0

(-+B)

first computes the assertion of B and then
computes the negation of B.

Relational Operacors

The relational operators compare the
value of two operands of the same type.
Numeric operands are compared directly., and
"dictionary order" is used to compare
string cperands.

All relational operators ‘are binary.
The relational operators are:

= Equal To

<> Not Equal To

> Greater Than

< Less Than

D= Greater Than or Equal To
<= Less Than or Equal To

The relational operators are evaluated from
left to right.

The result of a relational operation is
always numeric. A true relation has the
value (-1), and a false relation has the
value (0).

Strings are compared as if you were to
them up in an English dictionary. The
closer a word or phrase is to the end of
the dictionary, the greater its value. For
example, the relation:

lldoq" > “Cat"

Copyright 1988 Burke & Burke Page 4-3

RSB User's Manual Version 1.0

is true because "dog"” would occur after
"cat" in a dictionary of English.
Logical Operators

Logical operators calculate bit-by-bit
logical operations on their operands.

The binary logical operators are:

AND Bit-wise AND
OR Bit-wise OR

These operators are evaluated from left to
right.

The unary logical operators are:
NOT Bit-wise NOT (inversion)

These opaerators are evaluated from right to
lefr.

Only numeric operands, with values in
the range -32768 to +12767, may be used
with logical operators.

String Operators

String operators perform operations on
string operands, producing a string result.

These are the string operators:

- Assignment
+ Concatenation (join strings)

The string assignment operator is evaluated
from right to left, and follows the same

Copyright 1988 Burke & Burke Page 4-4

o~

{

RSB User's Manual Version 1.0

rules as numeric assignment. The string

concatenation operator produces a string

consisting of the left-hand operand

followed immediately by the right-hand

operand; it is wevaluated from left to
(J right.

Operator FPrecedence

The Table summarizes the precedence of
each cperator. Operators at the top of the
Table have higher precedence than those at
the bottom. Operators on the same line
have equal precedence.

{...) Any Parenthesis
NOT, +, - Numeric’ Unary operators
+ String Concatenation
(<,>,= etc String Any relational
Numeric Exponentiation
*, / Numeric Mult., Divide
+, - Numeric Add, subtract
<r>2:m BtC Numeric Any relational
AND, OR Numeric Binary logical
= Any Assignment

Here's how you wuse the precedence table.
For the expression:

my

L

(

3 AND 4 > 3

Copyright 1988 Burke & Burke Page 4-5

RSB User's Manual Version 1.0

we sae that the pracedence of the numeric
'>' operator is higher than that of the
'AND' operator. This means that RSB will
evaluacte the expression as 1f it were
written:

3 AND (4>3)

Funccions

RSB includes many built-in functions,
and you can use the DEF statement to create
custom functions when your programs need
them.

Functions accept one Oor MOore arguments,
and produce a single result. The arguments
need not all be of the same type. Some
functions return numeric values, and others
return string values.

The result of a function is an operand
that can be used as part of an expression.
Typical RSB built-in functions are:

SIN(x) {trigonometric sine)
ABS(x) (absolute value)
LEFTS(a35,p) (left substring)

References to functions look very much like
references to arrays. You can always
identify a fdnction by looking up its name
in the command reference in Appendix A.

Copyright 1988 Burke & Burke Page 4-6

{

P

RSB User's Manual Version 1.0

Chapter 5

——— o — o AL Bl o P Y —— T ——— T A ey it W T T — T " . T r————

S A B e ke e e g o e Ty TR PO — T T . Uinke Mk ok b e = ey T W Y S S St m— 2 —

RSB provides powerful file I/0O commands
that allow you ¢t0o access files stored on
any 089 device. Like Disk Extended Color
BASIC, RSP supports both seguential and
random files. RSB also allows you to treat
any 059 device as a file.

Drive Numbers=s

RSB takes advantage of O0S9's Unified
I/0 System to give you access to any of

. your system's storage devices from BASIC.
RSB is compatible with all types of 059 RAM

disks, floppy drives, and hard drives.

DECB allowed you to select one of four
disk drives by using a number between 0 and
3. Typical DECB disk commands looked like
this:

DIR 1 (accessed disk #1)
OPEN "I",l,"TMP:3" (accassed disk #3)

The number 1 in the first command, and the
number 3 in the second command, are both
"drive numbers" that specify which floppy
drive to use.

With RSB, drive numbers take on a new

meaning: rather than selecting a floppy
disk drive, they select an 059 directory.

Copyright 1988 Burke & Burke Page 5-1

RSB User's Manual Version 1.0

You can have hundreds of directories.,
located on many different devices, under
0s9. RSB provides a new command, OPEN
DRIVE, that lets BASIC programs access any
directory as any drive number. Here's how
it works:

100 OPEN DRIVE 3,"/d0/basic/games”

This command tells RSB that any future
references to drive 3 should access the
directory /dO0/basic/games. OPEN DRIVE

can set the directory for any drive number
0-3. A BASIC program can eveh set several
drive numbers to use the same directory.

Segquenctial Files

059 does not divide files into various
types, but RSB will treat any file opened
with che "I" or "O" option as a seguential
file.

A sequential file is the simplest type
of £file supported by RSB. This type of
file is just a long stream of data.

To read anything from a sequential
file, a program must also read everything
that comes before it in the file. When a
program writes to a sequential file, all
data after the written item is erased.

You c¢an't wupdate a sequential file.
Instead, RSB programs create a new file
and copy the contents of the old file to
it. Any updates must be made as the file
is being copied.

Copyright 1988 Burke & Burke Page 5--2

Kol

RSB User's Manual Version 1.0

Sequential files can be of any length.

Random Files

RSB will treat files opened with the
"R" or "D" options as random files.

Random files are organized as a list
of fixed-size records. Programs can read
or write any random file record, at any
time, without having to read or change
the rest of the file.

You can think of a random file record
as an electronic index card. Index cards
come in various sizes, each size holding a
certain amount ¢f information. You don't
have to use all of the available space on
an index card, but if you aren't using
all of it you may need a different size
of card.

The OPEN statement specifies how many
bytes of information can be stored in each
record of a random file. Each open random
file has its own record size; for example.,
one random file may be made up of 37 byte
records, while another may use 3000 bytes
per record.

Each random file may have as many as
65,000 records.
Devices as Files

Without 059, DECB had very limited
support for serial devices. RSB takes

advantage of 059's Unifjad I/0 System to
provide enhanced support for this type of

Copyright 1988 Burke & Burke Page S5-3

RSB User's Manual Version 1.0
device.

RSB allows you to cpen serial, or SCF.
devices as if they were sequential files.
RSB's sequential file I/0 commands can
also read, write, and check the status of
SCF devices.

For example, the line:

300 OPEN "O",1."/P"

will open the device "/P" for sequential
output. If "/P" is a printer, the line:

310 PRINT #1l,"Hello"

will send the word "Hello" to the printer.

Copyright 1988 Burke & Burke Page 5-4

T

T
H

RSB User's Manual Version 1.0

Chapter 6

Text s Sraphics.,
and Sound

e o e R o i e o S S L L A M A i —— e —

Most BASIC programs genherate taxt or
graphics, or both. Sinca RSB runs in an
0S9 window, text and graphics are displayed
in the current window.

Level 2 0359 provides two types of
windows: VDG windows, which are compatible
with the CoCo 2, and true windows, which
allow high-resolution 'text and graphics.
RSB will run in either type of window.

Some RSB commands operate differently

'in VDG windows than in true windows. For

example, high-resolution text and graphics
commands are not allowed in VDG windows.

Music is also an important part of many
BASIC programs. RSB's PLAY and SOUND work
like their DECB counterparts; but can also
be used to control a Speech/Scund PAK or
other sound generation hardware.

Text Attributes

The CoCo 3 allows you to use 32, 40, or
80 column screens from BASIC. Under RSB,
you must be running in a true window to use
40 or 80 column screens. VDG windows are
limited to 32 columns of text.

Copyright 1988 Burke & Burke Page 6-1

RSB User's Manual Version 1.0

On 40 and 80 c¢olumn screens, BASIC
programs can use the ATTR command to
control forground <olor, background color.,
blinking and wunderlining for each scresn
location. This command can alsce be used
with 32 column screens if RSB is running in
a true window, but will generate ?HR.ERROR
if used on a VDG screen.

When 0S89 creates a VDG screen. it will
enable either true lower case oOr inverse
video based on the TYPE byte of the window
descripecor. Both types of VDG windows are
compatible with RSB.

Under DECB, the 32 column text scresen
was always located at address $5400. 0859
alloates RSB's text screen from system
memory, so the address of the sc¢reen is
not avallable to RSB programs. RSB uses
the area from $5400-55FF for other purposes.
Programs that access the 32 column text
screen directly must be modified before
they can be used with RSB.

RSB's HSTAT command can be wused to
determine the current cursor position on a
40 or 80 column screen. 5Since 059 does not
provide a facility to read the character
under the cursor., HSTAT does not return the
character code or character attributes.

Block Graphics

Some BASIC programs use block graphics
to create simple, colorful shapes mixed
with 32 column text.

On a 32 column VDG screen, character

codes greater than 127 produce standard

Copyright 1988 Burke & Burke Page 6-2

—

oD Wwawh D 1manual VOLILWIL LY

CoCo 2 block graphics. RSB does not support
block graphics on true windows.

Low—Res Graphics

Low-resolution graphics provide up to
256 x 192 graphic points in two colors, or
up to 128 x 192 graphic points in four
colors.

For maximum compatibility, you should
use a VDG screen to run programs that use
low-res graphics.

RSB will automatically convert low-res
graphi¢cs commands into high-res commands
when wusing a true window. This sometimes
produces surprising results. One common
eXxample is that a translated DRAW statement
may leave a 1 pixel gap in the resulting
design -- wreaking havoc with subsaquent
PAINT statements. A simple edit of the DRAW
statement usually fixes the problem.

059 always allocates a full 6K buffer
for VDG (low-res) graphics. The equivalent
DECB graphics modes are PMODE 3 and 4. RSB
emulates PMODE 0. 1, and 2 by converting
commands as follows:

Actual Command Translation

PMODE - 0 PMODE 4

PMCDE 1 PMCDE 3

PMODE 2 PMODE 4

PCOPY equivalent PCOPY
PCLEAR None - edit program

Programs that use the PCLEAR command must

Copyright 1988 Burke & Burke Page 6-3

RSB User's Manual Version 1.0

be modified to reserve memory as if they
were using PMODE 4.

Programs may allocate zero, cne, or two
graphics screens. Unlike DECB: RSB does
not allocate graphics screens from BASIC
program memory: however, there must be
enough room 1in RSB's 64K memory map to
allocate the number of screens reaquested.

The memory for low-res graphics screens
is not includad in the memory size that you
specify on the RSB command line. Entering:

L

rsb #24K

gives RSB 24K of storage. RSB itself takes
up 32K, 50 BK remains for low-res graphics
screens.

RSB automatically converts the starting
page number for PMODE graphics displays to
the nearest lower or same page that is on
an even full-screen boundary. For example,
PMODE 3,2 is identical to PMODE 3,1 because
graphics pages 1 and 3 are both part of the
first PMODE 3 graphics screen.

When running in a VDG window, RSB uses
DECB's original routines to perform all
low~res graphics commands. Apart from the
translations mentioned above, all low-res
graphics commands perform identically under
RSB and DECP when a VDG window is used. ‘

Wwhen running in a true window, RSB
translates all low-res graphics commands to
similar commands that are compatible with a
16 color, 320 x 192 graphics window. Oonly
the left-most 256 pixels of this window are
used: the right-hand edge of the window is

Copyright 1988 Burke & Burke Page 6-4

{

5{

——

RSB User's Manual Version 1.0
cleared to the background color.

Colors are converted to the matching
high-res color set. Coordinates are scaled
to 059's 640 x 192 standard range.

Some commands cannot be translated from
low~res to high-res, including:

GET PCOPY PUT

Executing any of these commands in a true
window will produce an ?HR ERROR.

When using PMODE-type graphics commands
on a true window, RSB will display graphics
as soon as any graphics command draws on
the graphics screen, or whenever the SCREEN
1l command is executed.

High—Res Graphics

One of the best features of the CoCo 3
i3 its high-resolution graphics capability.

RSB uses 089's powerful windowing
system to draw high-resolution graphics.
All graphics commands are implemented with
standard 059 graphics commands and service
calls. A key benefit of this technique is
that RSB high-res graphics will work on
any future graphics devices that meet the
059 standard, or on an external graphics
terminal.

There are a few important differences

between 0S9's and DECB's high-res graphics
commands .

Copyright 1988 Burke & Burke Page 6-5

RSB User's Manual Version 1.0

First, all 0S9 hi-res graphics commands
ugse a 640x192 coordinate system, even on
screens that are ohly 320 pixels across.
DECB uses absolute cocordinates on all high-
res screens. RSB handles this difference
by scaling coordinates on 320x192 screens.
DRAW commands that produce clcsed figures
under DECE may leave a 1 pixel gap under
RSB, due to scaling of the endpoints. For
example, the command:

HDRAW "U10:L10;D10;R10"
must be changed to:
HDRAW “U10:;L10;D10;R11"™

if you intend to use it on a 320 pixel RSB
high-res graphics screen.

Second, 059's hi~res flood-fill command
works differently than DECB's HPAINT. The
DECB HPAINT command fills with a specified
color wuntil a specified border color is
encountered; RSB's HPAINT changes the color
of all adjacent pixels, that are the same
color as the starting point, to a specified
color. If you specify a border color with
RSB's HPAINT, it is ignored.

In many cases the two HPAINT commands
produce identical results, but here's an
example that illustrates the difference:

Suppose that the outer box is white, the

Copyright 1988 Burke & Burke Page 6-6

P

T

RSB User 's Mahual version 1.0

inner box is blue, and the area inside each
box is red. A DECB HPAINT command that
specifies a white border will fill the
entire outer box and erase the inner box.
but the same command in RSB will just Ffill
the inner box.

No—Hal .o Sound

RSB uses standard 059 SS.TONE system
calls to generate sound for PLAY and SOUND
commands. These commands are normally sent
to standard output, but the RSB environment
file allows you to specify any sound
producing device.

If no socund device is specified, RSB
uses the Windowing System's built-in tone
generation software. This software slows
down multitasking significantly during tone
generation.

You can use the Speech / Sound PAK,
Super Voice, or other no-halt sound-
producing hardware with RSB. To do so,
you must install an 059 dri-2r for the
sound device and list it in the environment
file. Note that your sound device driver
MUST support the SS.Tone service call.

Copyright 1988 Burke & Burke Page 6-7

RSB User's Manual Version 1.0

Appendix A

S e T s A ot el T . — e . —————— v —————————— A —k g

Commands Reference

———— ——— T iy T T T

RSB programs are made up of commands
that direct the actions of your computer.
Some commands allow parameters or options
that select one of several actions.

Options and parameters are usvally
expressions (see Chapter 4). An expression
performs a calculation, and may call one or
more RSB functions in the process.

Both commands and functions are written
as short groups of letters, or keywords.
Disk Extended Color BASIC keywords are
described in your Color Computer 3 Extended

BASIC and Color Computer Disk System
manuals. This Chapter describes several
commands that are new in RSB, and commands
that work differently under RSB than under
DECB.

Referencea Forrmatc

The listing for each command is divided
into several sections:

Command name

Syntax (spelling, option arrangement)
Function (what the command does)
Parameters

Raturn Value

Notes (special features / regquirements)

Copyright 1988 Burke & Burke Page A-1

RSB User's Manual Version 1.0
Examples

Commands and functions are intetermixed.
All keywords are arranged in alphabetical
order. Some keyword listings vary slightly
from the standard reference format: for
example, Return Value is listed only for
functions.

Command Name

This is the name of the command or
function, and a brief description of it.
Commands and functions are arranged in
alphabetical order.

Syntax

Writing an RSB command is like writing
a sentence in English; you have to arrange
the keywords in a certain order. use the
correct punctuation, and so on, if you want
the computer to understand your command.

The syntax of a command is a set of
instructions for writing that command
correctly.

Upper-case letters indicate a word that

You must enter exactly as it is written.

Lower-~case lettars mark places where you
can fill in an option or parameter value;
the lower case letters only describe the
type of information that you must supply.

Several special symbols are used in

command syntax, to make the instructions
shorter. These symbols are:

Copyright 1988 Burke & Burke Page A-2

RSB User’ s Manual Vvarsion 1.0

{1 Anything betweeen these brackets is
optional. You don't type the
brackets as part of the command.,
just what's between them. Brackets
can be nested to indicate options
of options.

.+« This symbol indicates that you can
repeat the previous item as many
times as you like.

| When vyou see items separated by
this symbcl, you must choose only
one of the items. The 1list of
choices is enclosed in {} brackets.

Function

A general description of the command's
operation 1is presented here. You should
also refer to the Notes section for
information about any special features or
requirements of the command.

Parameters

some commands (like INKEYS) are made up
of a single keyword. More commonly:, You
must provide additional information with a
command in order to completely specify its
action. This additional information can
have several parts, and each part is callead
a parameter.

The parameters section gives you full
descriptions of the same command parameters
that were described as single words in the
command syntax. The description includes

Copyright 1988 Burke & Burke Page A-3

RSB User's Manual Version 1.0

both ranges of legal values and default
values.

Return Value

'All RSB functions produce a result, or
return value. This value may be a string
or a number; it may have a particular range
of legal legal values or length.

The Return Value section tells you what
type of information a function returns.
Commands 4o not produce a return value, so
this section is omitted for commands.

Notes

Advanced programmers sometimes need to
know more about a command than is provided
in the Function section. Very detailed or
noteworthy information about a command is
listed in the Notes section.

For example, if a command disables 059
interrupts, this information is listed in
the Notes section rather than the Functien
section.

Examples

This section provides at least one
example of an actual command or function,
with all parameters filled in. It also
describes the action performed by cthat
specific command.

Copyright 1988 Burke & Burke Page A-4

RSB User's Manual Version 1.0

AUDI O Control Cassette Port Audio

Syntax:
(AUDIO (ON|OFF}
(.Function:

This command is provided for compati-
bility with DECB. It does not perform any
function under RSB.

Examples:

AUDIO ON

This command is ignored.

Copyright 1988 Burke & Burke FPage A-5

RSB User's Manual Version 1.0
BACKUP Duplicate a Disk
Syncax:

BACKUP s_drive TO d_drive
Function:

This command copies an entire disk to
another disk of the same size.

Parameters:

s_drive Source drive number, 0-3
d_drive Destination drive number, 0-3
Notes:

RSB calls 059's BACKUP utility to do
the actual work.

The source and destination drive
names are obtained from the directory
names for drives 0-3. You must use full

path names for the directories or BACKUP
will not be able to determine the drive
~ name.

If the source and destination drive
numbers are identical, RSB initiates a
single-drive backup.’

Examples:

BACKUP 0 TO 1

Copies everything on drive 0 to
drive 1.

Copyright 1988 Burke & Burke Page A-6

e

RSB User’'s Manual Version 1.0
CLEAR Erase Variables & Configure
Syntax:

CLEAR [s_mem{,m_limit]]
Function:

Erases all variables and arrays. Can
also be used to allocate memory for string
variables and machine language subroutines
by specifying optional parameters.

Parameters:

S_mem Amount of memory to allocate
for string variables. Default
value is no change.

m_limit Highest RAM address that RSB
may use for program and data
storage. This address must
be within the RAM allocated
to RSB. Default wvalue |is
no change.

Notes:

At reset, RSB automatically allocates

200 bytes of string space. Programs that
manipulate strings usually need more than
200 bytes. A good rule for guessing how

much string space you need is to add up
the maximum length of each string, plus
3 bytes per string, plus 10%.

You can safely load machine language
subroutines or data at the first address
after m_limit, as long as whatever vyou
load ends before the beginning of RSB.
You can find out the beginning address of

Copyright 1988 Burke & Burke Page A-7

RSB User's Manual Version 1.0
RSB with the line:

RS = 256*PEEK{&HSEO)+PEEK(&HSEL)
Examples:

CLEAR 1024

Erases all variables, and reserves
1024 bytes for strings.

Copyright 1988 Burke & Burke Page A-8

HobB uUser s manual version 1.0

CILL.OAD Load Program from Cassette
Syntax:

CLOAD (file_name]
'Function:

Loads a BASIC program from O0S9's
cassette device.

Parameters:

file_name A string that names the file
to be loaded. If no name |is
given, RSB will . try to load
the first BASIC program file
stored on the cassette device.

Notes:

RSB reads the name of the cassette
‘device from the environment file at
startup.

CLOAD and other RSB cassette I/0
commands access the cassette device via
059 system calls. Any davice with a
suitable device driver can be used as cthe
cassette device.

The RSB package does not include a
cassette device driver. RSB's cassette I/0
driver requirements are listed in Appendix
E.

Example:

CLOAD "BRIDGE"

Loads the BASIC program named BRIDGE

Copyright 1988 Burke & Burke Page A-9

RSB User's Manual Version 1.0

from the cassette device.

Copyright 1988 Burke & Burke

Page A-10

Pt

= — -—_— —_ R e - T owm W Al AW

CTCLOADM Binary Cassette Load
sSyntax:

CLOADM [file_namell,offset]
Function:

Loads a machine language program or
data file from 0OS9's cassette device.

Parameters:

file_name A string that names the file
to be loaded. If no name is
given, RSB will try to load
the first binary file stored
on the cassette device.

offset This value is added to each
load address in the binary
file, effectively loading the
file higher or lower in memory
than its default address. The
legal range is 0-65535. The
default value of offset is 0.

Notes:

If the sum of the offset and a load
address is greater than 65536, RSB
subtracts 65536 to obtain a legal address.

You are responsible for making sure
that CLOADM does not destroy any
information needed by RSB or 0S9. Be surs
to use the CLEAR command to reserve memory
for machine language or binary data files
before using CLOADM.

See also CLOAD.

Copyright 1988 Burke & Burke FPage A-11

Example:
CLOADM "SCREEN",16384 (
Loads the binary file named SCREEN

from the cassette device, adding 16384 to
every load address in the file.

e,

.

Copyright 1988 Burke & Burke Page A-12

RSB User's Manual Version 1.0
COPY Copy & File
Syntax:

COPY s_name [TO d_name]
Function:

This command creates a copy of a
single file.

Parameters:
S_name Source file name

d_name Destination file name.
Defaults to same as s_name.

Noteas:

RSB calls 0S89's COPY wutility to do
the actual work.

If the destination file name is
omitted, RSB initiates a single-drive copy
command.

Examples:
COPY "TEST.BAS" TO "TEST.OLD:1"
Copies the file TEST.BAS from the

current defult drive to drive 1, giving
the copy the name "TEST.OLD".

Copyright 1988 Burke & Burke Page A-13

RSB User's Man—al Version 1.0
CSAVE Save Program to Cassette
Syntax:

CSAVE file_namel Al
Function:

Saves a BASIC program to the cassette
device.

Parameters:

file_name The name to give the file when
saving ic.

A If gspecified, save the file in
ASCII format. Ctherwise the
file 1is saved 1in tokenized
formac.

Notes:

See also CLOAD.
Example:
CSAVE "PROGl".,A
Saves whatever BASIC program is in

memory to the cassette device in ASCII
format, with the name PROGL.

Copyright 1988 Burke & Burke Page A-14

=

-

T e

-

RSB User's Manual Version 1.0
CSAVEM Binary Cassette Save
‘Syntax:

CSAVEM file_name,start,end.exec
Function:

Saves @& machine language program or
data file to 039's cassette device.

Parameters:

file_name The name to give the file when
saving it.

start The lowest address to be saved
to the file.

end The highest address to be
saved to the file.

exec The address at which to begin
exacuting the file when it
is reloaded.

Notes:

The exec parameter must be present in
every CSAVEM command. When you reload the
file, the default address of the EXEC
command is automatically set to whatever
address you used in the CSAVEM command.
Even if you are just saving binary data to
the cassette, you must still specify a
value for the exec parameter.

See also CLOAD.

Example:

Copyright 1988 Burke & Burke Page A-15

RSB User's Manual Version 1.0
CSAVEM "DATAl",&H3000,&H3FFF,&H0000
Saves the binary data between

‘addresses &HCO000 and &HCOOF (inclusive) to
cagssette data file named DATAL.

Copyright 1988 Burke & Burke Page A-~1l6

T

S

——

NWi? wvaIohk 2 riandc L YyOL O LW Farar
DT R Show Directory
Syntax:
DIR [drivel
Function:

This command displays the directory of
the specified drive.

Parameters:

drive Drive number, 0-3. Defaults
to the default drive if not
specified.

Notes:

RSB calls 0S9's DIR utility to do the
actual work.

The source and destination drive
names are obtained from the directory
names for drives 0-3.

Example:

DIR 2

Display the directory for drive 2.

Copyright 1988 Burke & Burke Page A-17

RSB User's Manual Version 1.0
DOS Exit to 059
Syntax:

DOS
Function:

Closes all files, erases any BASIC or
machine language programs from memory.,
stops RSB, and returns control to 0S59.
Parametears:

Notes:

Early versions of Disk BASIC did not
provide a DOS command. The RSB installer
automatically adds the DOS command to your
version of Disk BASIC if necessary.
Example:

9999 DOS

Returns control to 059 when the BASIC
program executes line 9999.

Copyright 1988 Burke & Burke Page A-18

B

RSB User’'s Manual Version 1.0
DRAW Draw a Low-Res Figure
Syntax:
DRAW f_info
Function:
Draws a figure on the low-res graphics

screen. The figure is made up of 1line
segments described by the string f_info.

Parameters:

£ _info A DRAW parameter string as
described in Color Computer 3
Extended BASIC.

Notes:

All coordinates used in DRAW commands
are scaled when using DRAW on a true
window.

Coordinate scaling can cause 1 pixel
"holes" in the border of figures that do
not have overlapping endpoints, leading to
problems with subsequent PAINT commands.
You can correct this by editing the figure
so that the beginning and end points of
the line overlap by at least 1 unit.

On a true window, executing DRAW (or
any other graphics command) while a text
screen is displayed will erase the text
screen and display the graphics screen.

Example:

DRAW "U10:D1l0:;L10;R11"

Copyright 1988 Burke & Burke Page A-19

R5B User's Manual Version 1.0

Draws a box, 1l units on a side, on
the low-res graphics screen. Note that
the 1length of the final segment is 1ll.,
rather than 10, to make the endpoints of
the figure overlap.

Copyright 1988 Burke & Burke Page A-20

S

NoD vbelr o I1IManuval YRLODALAWIL L.V
DSKI S Raw Disk Read
Syntax:

DSKIS$ drive,track,sector.bfrl.,bfr2
Function:

Reads an absolute sector from a disk.

Parameters:

drive Drive number., 0-3.

track Track number., 0-191

sector Sector number, 0-63

bErl Name of string variable to
store first 128 bytes of
sector data.

bfr2 Name of string variable to
store second 128 bytes of
sector data.

Notes:

This command is not supported with the
standard CC3Disk 059 floppy driver, but is
supported by several third party floppy
drivers.

Direct disk reads use the SS.DREAD
status call. Check your third-party disk
driver manual for further information
about SS.DREAD.

For floppy drives, the number of sides

is determined by examining the PD.OPT
section of the drive path descriptor, and

Copyright 1988 Burke & Burke Page A-21

RSB User's Manual Version 1.0

not by reading LSNO. DSKI$ will not work
correctly if you try to use a single-sided
disk in a double-sided drive.

DSKIS is not supported on hard drives.

Example:
DSKIS 0.,34,0,AS5.BS

Read the first sector of track 34 to
the variables AS and BS.

Copyright 1988 Burke & Burke Page A-22

o

Fup VasL S MGLUGL VELDAUN L.V
DSKIINI Format Disk
Syntax:

DSKINI drive
Function:

This command erases all information
from a disk and prepares it for use under
0s9.

Parameters:
drive Drive number, 0-3.
Notes:

RSB calls 0S89's FORMAT utility to do
the actual work.

The drive name is obtained from the
directory names for drives 0-3.

Example:
DSKINI 2

Format disk where directory #2 is
located.

Copyright 1988 Burke & Burke Page A-23

RSB User's Manual Version 1.0

DSKOS Raw Disk Write
Syntax:

DSKQS drive,track,sector,bfrli,bfr2
Function:

Writes an absolute sector to a disk.
Parameters:

Sea DSKIS

This command is nhot supported with the
standard CC3Disk 059 floppy driver, but is
supported by several third party floppy
drivers.

Direct disk writes use the SS.DWRIT
status call. Check your third-party disk
driver manual for further information
about SS.DWRIT.

DSKO$ is not supported on hard drives.
Example:

DSKOS 0,34,0,AS,BS

Write the first sector of track 34,
using the data in variables AS$S and BS.

Copyright 1988 Burke & Bufke Page A-24

o~

rop user s manual version 1.0
EOF Check for End of File
Syntax:

EOF{device)
Function:

Return a value indicating whether or
not the end of a file has been reached.

Paramateps:

device The number of the device to bhe
checked. Must be -2 - 15.

Return Value:

-1 if at end of file, 0 if not

Notes:

On SCF-type devices, EOF first checks
the device's one byte cache and returns 0
if there is data in the cache. If there
is no data in the cache, EOF uses the
SS.EOF status call to chack for end of
file.

Example:

110 IF EOF(l) THEN 139
120 READ #11l.AS

Line 110 checks for end of file on

device 1, and skips line 120 if end of
file is detected.

Copyright 1988 Burke & Burke Page A-25

RSB User 's mMmanual version L.V
EXEC Call Machine Language Routine
Syntax:

EXEC [address|
Function:

Calls a machine language subroutine.
Parameters:

address The starting address of the
machine language subroutine.
If no address 1is specified:
the address set by the most
receant LOADM or CLOADM
command is used.

Notes:

No particular register values are
passed to the machine language subroutine.

All 059 programs, including RSB, are
position independent and may be loaded at
any memory address. BAS1C programs must
take an extra step when wusing the EXEC
command to call a routine that is part of
RSB.

For example, the DECB routine that
reads the joysticks is at address &HAS9DE.
A DECB program could call this routine by
executing the command:

EXEC &HAYDE
Under RSB, you must mddify the command to

account for 089's position-independent
loading. The RSB version of this command

Copyright 1988 Burke & Burke FPage A-26

ST

e — e m w saamsaan- e ven Al A
.
:

1s

A=256*PEEK(&H5EQ }+PEEK(&H5EL) :
B=&H7FFB:
EXEC A+(&HA9DE-B)

'A' is the starting address of RSB. 'B' is
a "magic number" that, when subtracted
from a DECP address, gives the relative
location of the same address in RSB.

You can also use EXEC to call machine
lanqguage programs that were loaded with
the LOADM, CLOADM, or POKE commands.
Be sure to use the CLEAR command to
reserve memory for machine language
routines before loading them into memory.

Machine language routines do not have
to be position independent, but they must
use 0S9 systam calls for all I1I/0.

Thers are significant internal
differences between bDECB and RSB.
Machine language rcoutines that attempt to
modify BASIC (e.g. add new commands or
change command operation) will probably
not work with RSB, and may crash your
computer.

Example:

100 CLEAR 255, &H3FFF

110 POKE &H4000,&8H39:'RTS instruction
120 EXEC &H4000

130 PRINT "ALL DONE!"

Line 100 reserves RSB's memory beyond
address &H3FFF for machine language
routines. This 1line also reserves an
arbitrary amount of RAM, 255 bytes, for

Copyright 1988 Burke & Burke Page A-27

RSB User's Manual Version 1.0
strings.

Line 110 wuses the POKE command to
store a very simple machine language
routine at address &H4000. Note that
this is the first available address
defined by the CLEAR command in line 100.

Line 120 uses the EXEC command to call
the routine that was set up in line 110.
When the routine exits, it returns control
to RSB.

Line 130 has been added to show that
the BASIC program continues to run after
completely executing the machine language
routine.

Copyright 1988 Burke & Burke Page A-28

.

e,

o

KSB User s Manual version 1.0
FREE Calculate Free Disk Space
Syntax:

FREE(drive)

Function:

This function is provided for compati-
bility with DECB. It does not perform any
real function under RSB.

Parameters:
drive Drive number to check (0-3)
Return Value:
Always returns 1.
Examples:
A = FREE{(O0)

Returns a value of 1.

Copyrighf 1988 Burke & Burke Page A-29

RSB User's Manual Version 1.0
GE'T Copy Low-Res Graphic Rectangle
Syntax:

GET (sx:sy)-(ex,ey),arvayl .Gl
Function:

Copies a rectangular area of the low-
res graphics sc¢reen to an array. You can
then use the PUT command to duplicate the
rectangle anywhere on the graphics screen.

Parameters:

sX X-coordinate of one corner of
the rectangle, 0-255

sy Y-coordinate of one corner of
the rectangle, 0-191

ex X-coordinate of the opposite
diagonal corner of the
rectangle, 0-255

ey Y-coordinate of the opposite
diagonal corner of the
rectangle, 0-191

array The name of a two-dimensional
array that is big enough to
hold the graphic rectangle

G Enables full graphic detail.
This option 1is reguired when
using PMODE 3 or PMCDE 4.

Notes:

The GET command generates a ?HR ERROR
when used on a true window.

Copyright 1988 Burke & Burke Page A-30

e,

RSB User's Manual Version 1.0

Each screen pixel 1is stored in a
single array element. You need a 12 x 3
.array to store a 12 x 3 rectangle.

When using GET and PUT together., you
must use the same PMODE for both the GET
and the PUT.

Example:

100 DIM A(19.,2)
110 GET (0,0)-(19.2).A
120 PUT (100,100)-(119,102).,A

Line 100 declares an array big enough
to hold a 20 % 3 graphic rectangle. Note
that the DIM command reserves elements
beginning at subscript 0, so 1line 100
actually declares a 20 X 3 array.

Line 110 copies the 20 x 3 graphic
array described by the diagonal line from
(0,0)-(19,2) into array A.

Line 120 duplicates the original
rectangle at another screen location.

Copyright 1988 Burke & Burke Page A-31

R5B User's Manual Version 1.0
HBUFF Declare Hi-Res Graphic Buffer
Syntax:

HBUFF buffer.size
HBUFF 0O

Function:

Reserves memory for use by subsequent
HGET and HPUT commands.

Parameters:

buffer A buffer number in the range
1-253
size The number of bytes to reserve

for the buffer, minus one, in
the range 0-32767

Notes:

HBUFF 0 erases all buffers and returns
their memory to 0359. '

Hi-res graphics buffers, wunlike the
arrays used in low-res graphics, store an
exact image of the binary screen data. The
number of bytes needed to store a hi-~res
graphic rectangle depends on which HSCREEN
YyOou are using. You can find a detailed
explanation of how to calculate the size
of a hi-res buffer in Color Computer 3
Extended BASIC.

Once you have allocated a buffer, the
only way to change its size is to use the
HBUFF 0 command. This command erases and
deallocates all hi-res graphic buffers
that your program has allocated.

Copyright 1988 Burke & Burke Page A-32

——

Pt

N WOSE & FAIIUGA VELDLI0MN L.V

The first time you use a buffer number
in an HGET command, O0S9 will auvtomatically
allocate the correct amount of memory to
that buffer. DECB does not allocate
. buffers automatically, so programs that
take advantage of RSB's automatic buffer
allocation will not run correctly under
DECB. '

Example:
HBUFF 3,65

Reserves 65 bytes for hi-res buffer 3.

Copyright 1988 Burke & Burke Page A-33

RSB User's Manual Version 1.0
HDRAW Draw a Hi-Res Figure
Syntax:

HDRAW f_info
Function:

Draws a figure on the hi-res graphics
screen. The figure is made up of 1line
segments described by the string f_info.
Paramaters:
f_info An HDRAW parameter string as

described in Color Computer 3
Extended BASIC.

Notes:

All coordinates used in HGET commands
are scaled in HSCREEN 1-2.

Coordinate scaling can cause 1 pixel
gaps in the border of figures that do not
have overlapping endpoints. If you plan
to use HPAINT to fill an HDRAW figure,
make sure the HDRAW endpoints overlap.

Example:

HDRAW "U10;:;D10;L10:R11"

Draws a box, 1l units on a side, on
the hi-res graphics screen. Note that
the length of the final segment is 1ll.

rather than 10, to make the endpoints of
the figure overlap.

Copyright 1988 Burke & Burke Page A-34

— i,

o

Pl

HGE'T Copy Hi-Res Graphic Rectangle
Syntax:

HGET (sx,sy)-(ex,ey). ,buffer
Function:

Copies a rectangular area of the hi-
res graphics screen to a hi-res graphics
buffer. You can then use the PUT command

to duplicate the rectangle anywhere on the
graphics screen.

Parameters:

SX X-coordinate of one corner of
the rectangle, 0-639 or 0-319

sy Y-coordinate of one corner of
the rectangle, 0-191

ex X-coordinate of the opposite
diagonal corner of the
rectangle, 0-639 or 0-319

ey Y-coordinate of the opposite
diagonal corner of the
rectangle, 0-191

buffer The number of the hi-res
buffer to be used to store the
graphic rectangle.

Notes:

All coordinates used in HGET commands
are scaled in HSCREEN 1-2.

HGET stores graphic data in the buffer
in binary format, exactly as it is stored

Copyright 1988 Burke & Burke Page A-35

RSB User's Manual Version 1.0
in the displayed screen image.

When using HGET and HPUT together., you
must use the same HSCREEN for both
operations.

Example:
HGET (106,100)-(119,119),3
Cbpies the bhi-~res recctangle described

by the diagconal line from (100,:100)-(119,
119) to hi-res buffer 3.

Copyright 1988 Burke & Burke Page A-36

-

T

Mo Vel > NISanIua L VELDLWIE L.V

HPAIMNT Hi-Res Graphics Flood Fill
Syntax:

HPAINT (x.y)[,p_color,b_color|
Function:

Changes the color of an area on the
hi-res graphics screen.

Parameters:

X Starting X-coordinate, 0-639
or 0-319

¥ Starting Y-coordinate, 0-191

p_color Paint color, 0-15. Defaults

to current background color

b_color Dummy argument provided for
compatibility with DECB.

Notes:

HPAINT determines the current color of
the point at (x,y) on the hi~res graphics
screen. It then changes the color of that
point and all adjacent points of the same
color to a new color, p_color.

RSB's HPAINT operates differently than
DECB's HPAINT. The RSB and DECB commands
produce equivalent results in most cases.

Coordinates used in HPAINT commands
are scaled in HSCREEN 1-2.

Colors used in HPAINT commands are
automatically adjusted to the legal range

Copyright 1988 Burke & Burke Page A-37

RSB User’'s Manual Version 1.0
of colors for the current HSCREEN.
Examplé:

HPAINT (23.57).,3,0

Changes the <c¢olor of the area that
includes point (23,57) to color 3.

Copyright 1988 Burke & Burke Page A-38

-

RSB User’'s Manual Version 1.0
HEFRINT Hi-Res Text Output
‘Syntax:

HPRINT (x:y)stext
Function:

Displays text on the hi-res graphics
screen.

Parameters:

®x Starting ceolumn number, 0-79
or 0-39

Yy Row number, 0-23

text string value to display

Notes:

HPRINT will only display a single line
of taxt. Any text that extends past the
right-hand edge of the graphics screen is
discarded.

Text 1is displayed in the currently
selected OS9 graphic text font, using the
current graphic foreground and background
colors.

There are 80 text columns in HSCREEN

3-4, and 40 text columns in HSCREEN 1-2.
All HSCREENs have 24 text lines.

Example:

100 HSCREEN 1
110 HPRINT (17,12),"HELLO!"

Copyright 1988 Burke & Burke Page A-39

RSB User's Manual Version 1.0

Line 100 selects a hi-res graphics
mode that provides 40 X 24 text.

Line 110 prints the word, HELLO!, in
the center of the hi-res graphics screen.

Copyright 1988 Burke & Burke Page A-40

p—

KOD UsSer s Manual version 1.0

HS'TAT

Syntax:

Get Text Cursor Information

HSTAT c_var.,a_var.x_var.,y_var

Funccion:

Return the coordinates of the cursor
on 40 and 80 column text screens.

Parameters:

c_var

a_var

X_var

y_var

Dummy string variable name
for compatibility with DECB

Dummy numeric¢ variable name
for compatibility with DECB

Name of numeric variable to be
set to the current cursor
column number

Name of numeric variable to be
set to the current cursor
row number

Return Value:

c_var
a_var

X_var

y_var

Noteas:

Set to a single NULL character
Set to zero

Set tc the current cursor
column number, 0--319 or 0-79

Set to the current cursor
row number, 0-23

Copyright 1988 Burke & Burke Page A-41

RSB User's Manual Version 1.0

Unlike it's DECB counterparts RSB's
HSTAT command does not return the chacracter
code or attributes for the current cursor
position.

Example:

100 LOCATE 10,0
110 HSTAT CS.A,X:/Y
120 PRINT X.,Y

Line 100 moves the text cursor to
column 10 on text line O.

Line 110 sets the variables X and Y to
the current coordinates of the text cursor.
The result is X=)0, Y=0 due to line 100.,

Line 120 displays the result of the
HSTAT command.

Copyright 1988 Burke & Burke Page A-42

e

PN

RSB User's Manual Version 1.0
TOYSTEK Read Joystick or Mouse
Syntax:

JOYSTK(j_number)
Function:

Return the current horizontal or
vertical position of one of the joysticks.

Parameters:

Jj_number Indicates which axis and which
joystick are to be read.

0 Horizontal, right joystick

1 Vertical, right joystick

2 Horizontal, left joystick

3 Vertical, left joystick
Return Value:

Numbar, 0-63

Notes:

The joystick values are only updated
when both of two conditicons are true:

l) RSB's window is the active
display window.

2) The BASIC program calls JOYSTK(O0)

Note that JOYSTK(0) reads the joystick
valuves for both axes of each joystick.
Subsequent calls to JOYSTK(1-3) raturn
whatever values were read at the last
call to JOYSTK(O).

Copyright 1988 Burke & Burke Page A-43

RSB User's Manual Version 1.0

The right Jjoystick may be either an
actual joysick or a mouse. The left
joystick must be an actual joystick. The
environment file tells RSB which type of
device is connected to the right joystick

poret.

Wwhen using a mouse, RSB scales the
horizontal and vertical coordinates to
the normal joystick range of 0~-63.

You can also use the entire range of
the mouse by examining RSB's mouse status
buffer {$600-561lF) after calling JOYSTK.
This buffer contains the SS.Mouse packet.,
as defined in the Level 2 0S9 Technical
Reference

Example:

100 'Read Hi-Res Mouse to X(Y

110 P=&H600: 'Mouse buffer address
120 A=JOYSTK(0}:'Read mouse

130 IF PEEK(P)=0 THEN RETURN

140 Xw256*PEEK(P+24)+PEEK(P+25)
150 Y=PEEK{(P+27):'Set new location
160 RETURN

This short subroutine reads the hi-
res mouse coordinates to variables X and
Y. L.ine 130 was added so that X and Y
are not updated unless the window is
active.

Copyright 1988 Burke & Burke Page A-44

o

BN A W N e By N R RFE =Y VS kW AVIIE L oW

KIIL.I. Delete a File
sSyntax:

KILL file
Function:

This command deletes the specified
file.

Parameters:
file Name of the file to delete
Notes:

RSB calls 0S9's PEL utlility to do the
actual work. '

Example:
KILL "PROG.BAS:3"

Delete the program PROG.BAS from
directory #3.

Copyright 1988 Burke & Burke Page A-45

RSB User's Manual Version 1.0

LOAD Load Program

Syntax:

LOAD file_namel ,R]

Function:

Loads a BASIC program into memory.

Parameters:

file_name A string indicating the name
of the program file to be
loaded.

R If specified, RSB will RUN the
program automatically after
loading it.

Notes:

RSB automatically determines whethar
the file is in tokenized or ASCII fomat.

You can load a program from any device
by using a full 0S9 pathname as file_name.

The file name extension defaults to
- BAS

Example:
LOAD "BRIDGE:3"

Loads the program named BRIDGE.BAS
from directory #3.

Copyright 1988 Burke & Burke Page A-46

——

""—‘\ i

RSB User's Manual Version 1.0
LOCATE Move Text Cursor
Syntax:

LOCATE X.y
Function:

Move both the text cursor and the
print position to the specified text row
and column.

Parameters:

X Desired column number., 0-31.,
0-39, or 0-79

Yy Desired row number, 0-15 or
0-23

Notes:

The LOCATE command works on all text
screens, including 32 column VDG screens.

Example:

100 LOCATE 0,0
10 PRINT "NO PLACE LIKE HOME"

Line 100 moves the text cursor to
column 0 on text line 0.

Line 110 prints a text message at the
current cursor location.

Copyright‘1988 Burke & Burke Page A-47

RSB User's Manual Version 1.0
LOF Check for Data Available
Syntax:

LOF(device)
Function:

Return a value indicating whether or
not data is available from a device.

Parameters:

device The number of the device to be
' checked. Must be -2 - 15.

RaturnVValue:
See below.
Notes:

On SCF-type devices, LOF returns -1
if data is available and 0 if data is not
available. LOF first checks the device's
one byte cache and returns -1 if there is
data in the cache. If there is no data in
the cache, LOF wuses the 55.READY status
call to check for data.

LOF returns the number of records in
a random file, or the number of bytes in
a sequential file, when used on RBF
devices.
Example:

110 IF A>LOF(1l) THEN 130
120 GET #1.,A

Line 110 compares the variable, A,

Copyright 1988 Burke & Burke Page A-48

.

P

RSB User's Manual Version 1.0
to the number of records in random file

#1. If A is greater than the number of
records, line 120 is skipped.

Copyright 1988 Burke & Burke Page A-49

RSB User's Manual Version 1.0
MOTOR Control Cassette Motor
Syntax:

MOTOR {ON|OFF}
Ffunccion:

Issues a motor contrcl command to the
cassette device.

Parameters:

ON Turn the motor on
OFF Turn the motor off
Notes:

The RSB software package does not
include a cassette device driver. but RSB
can access compatible cassette drivers.

The MOTOR command issues an I$SetStt
call to the cassette device, with the
following register values:

Reg~B =» SS5.ComSt
Reg-Y = S0008 {(ON} or $0000 (OFF)

The path number is obtained at startup, by
opening the cassette path specified in the
environment file.

Example:

MOTOR ON

Turns on the cassette motor.

Copyright 1988 Burke & Burke Page A-50

e~

o~

e,

RSB User's Manual Version 1.0

OFPEIN Open a Path to a Device

‘Syntax:

OPEN mode,#device,pathl.,r_size]

Function:

Opens

a path to a disk file or

to a sequential I/0 device.

Parameters:

mode

device

path

r size

Noteas:

A string indicating how the
disk file or I/0 device will be
used.

"I" Sequential input
"o" ' Sequential output
"D" Direct records
"R" Random records

A number to be used in all
future references to tha disk
file or 1/0 device.

-2 Special -- printer
-1 Special -- casseatte
1-15 File or I/0 device

A string giving th~ name of the
file or I/0 device to be opened

The size of an individual data
record, in bytes. Used only
when mode = "D" or mode = "R".
The valid range of r_size is 0~
32767. The default record size
is 256 bytes.

Copyright 1988 Burke & Burke Page A-51

RSB User's Manhual Version 1.0

Both RSB and DECB allow you to access
disk files with the OPEN command. RSB also
allows you to open any 0S9 SCF-type device
for sequential input or output.

' Devices identified by negative devicae

numbers are Aalways open. RSB opens the
cassette and printer devices automatically
at startup. If these devices are not

sharable, they caan only be accessed from
one RSB window at a time.

The path name can be specified in BASIC
format or in 0S9 format. If a path name
begins with a "/", RSB will interpret it in
059 format: otherwise BASIC format is used.
Refer to Chapter 5 for a description of how
directory handles are used when a file name
is specified in BASIC format.

Example:
OPEN "O",1,"/t2"

Opans 059 device "/t2" as 059 device 1.

Copyright 1988 Burke & Burke Page A-52

P

o T

RSB User’'s Manual Version 1.0
OS99 Perform an 0S9 System Call
Syntax:

059(stat_str)

Function:

Performs an 059 system call with
specified register values, and returns
the register values after the call.

Parameters:

stat_str A string or string variable
that defines the system call.
Must be at lest 10 characters
and must have correct format.

Return Value:

String, contains the register
values after the system call.

Notes:

The first 10 locations of stat_str
are interpreted as follows:

Loations Function
1 System call code
2 CC register
register
register
register

-4
-5
-8
-1 register

U< JEN T I
cCxK XD

0

The register values after the call are
returned in the same 10 locations.

Copyright 1988 Burke & Burke Page A-53

RSB User's Manual Version 1.0

Stat_str may have up to 255
characters. Any characters after the
first 10 may be used as needed: for
example, you might set the X register to

point at byte 11 and use this portion of -

the string as a data buffer.

If stat_str 1is a variable name, the
059 function will modify the value of
that variable when it returns the
register values after the system call. If
you don't want to change the value of the
string variable., use the string '+’
operator like this:

100 B3$S=OS9(AS+"")

Now the 0S9 function will only change BS.
Be careful, theough:, because using the
string operator will also change the
location of the string in memory.

Example:

100 'Print 0S9 error message E

110 AS=CHRS(15)+CHRS{0)+CHRS{(0)+
CHRS(E)+" "

120 AS$=0S9(AS):PRINT CHRS$(10):

130 RETURN

This subroutine calls 059's PRINTERR
routine to display ‘the error message
passed as variable 'E’'. The PRINT CHRS
{10} was added to force a new line
after displaying the message.

Copyright 1988 Burke & Burke Page A-54

T

et

RSB User's Manual Version 1.0
PAIINT Paint Low-Res Graphics Figure
Syntax:

PAINT (x.y}{.p_color.b_color}
Function:

On a VPG window, fills an area bounded
by a line with a specified color.

On a true window, changes the color of
an area to a specified color.

Parameters:

X Starting X-coordinate, 0-639
or 0-319

¥ Starting Y-coordinate, 0-191

p_color Paint color, 0-15. Defaults
to current background color

b_color Border color, 0-15. Defaults
to current foreground ceolor

Notes:

On a true window, RSB's PAINT operates
differently than DECB's PAINT. The results
of both commands are often equivalent.
Example:

PAINT (23,57).,3.0

Fills the area including point (23,57)
and bounded color 0, with color 3.

Copyright 1988 Burke & Burke Page A-55

RSB User's Manual Version 1.0

PCIL.EAR Allocate Low-Res Screens
Syntax:
PCLEAR count

Function:

Allocates or deallocates low-res
graphics screens based on the value of

‘count’'.
Parameters:

count The number of 1.5K graphics
pages regquested.

Notes:

RSB allocates low-res graphics screens
from ©89's system memory map. Low-res
graphics screens do not wuse any of RSB's
program or variable storage memory.

0s9 low-res graphics screens are
always either PMODE 3 or PMODE 4, and use
6K of system memory each. 0859 will only
allocate complete screens.

RSB always assumes that the PMODE will
be either 3 or 4 when figuring out how
many screens to ask for. Any request for
a partial screen causes RSB to allocate an
entire screen. For example,

PCLEAR 2
will allocate one 6K graphics screen even

though there are normally four 1.5K pages
in a screen of this size.

Copyright 1988 Burke & Burke Page A-56

——

TN e,

RSB User's Manual Version 1.0

PCLEAR commands, in programs that use
more than one graphics screen and PMODEs
0-2, may have to be modified to regquest
the correct number of 6K graphics screens.

059 allows a maximum of two VDG low-
res graphics screens. Depending on the
amount of available system memory, 0S9 may
only be able to allocate one screen.

If your boot file is very large, 0S89
may not be able to allocate ANY VDG
graphics screens. If there are no low-res
screens available, all 1low-res graphics
commands will generate a ?HR ERROR.

The PCLEAR command is ignored on true
windows.

Example:
PCLEAR 3

Raservas one 6K low-res graphics
screen.

Copyright 1988 Burke & Burke Page A-57

RSB User's Manual Version 1.0

PCOFPY Copy Low-Res Graphics Page

Syntax: |
PCOPY source TO dest

Function:

Copies tche equivalent of one low-res
graphics page to another of the same size.

Parameta;s:

source Page number to copy from
dest Page number to copy to
Notes:

All RSB low-res graphics screens use 6K
of memory, regardless of PMODE. RSB scales
the size of a graphic¢s page (normally 1.5K)
to match the current PMODE.

For example, a DECP PMODE 0 screen uses
one graphics page, or 1.5K, of memory. The
same screen uses 6K of memory under RSB, so
the RSB PCOPY command will copy 6K of data

from one screen to another in PMODE 0.
Similary, 3K is copied in PMODE 1 or 2.

PCOPY generates a ?HR ERROR if executed
on a true window.

Example:
PCOPY 1 to 2

Copies graphics page 1 to page 2.

Copyright 1988 Burke & Burke Page A-58

o

i

— T

RSB User's Manual Version 1.0

FPLAY Play Music
Syntax:

PLAY m_info
Function:

Plays music made up of notes and rests
described by the string m_info.

Parameters:
m_info A PLAY parameter string as

described in Color Computer 3
Extended BASIC.

Notes:

The PLAY command uses the music device
spacified in the environment file. If no
music device 1is specified, RSB uses
standard output as the music device.

All notes and rests are generated by
ISSetStt calls to the music device, with
the following register values:

Reg-B = 55.Tone

Reg-Y = Pitch Descriptor
Tone code, 0-4095

Reg-X = Shape Descriptor
M5 byte = amplitude 0-63
LS byte = number of ticks

When standard output is a VDG or true
window, tones are generated by the Color
Computer 3's built-in interval timer.

The tone code in Reg-Y is related to
pitch by a simple formula:

Copyright 1988 Burke & Burke Page A-59

RSB User's Manual Version 1.0

fom e : B = 65,626 t; A = 16 t

t = 16 * (1/28,636,363) {bus cycle)
All RSB compatible scund device drivers
use the same formulas for pitch and
duration.
Example:

PLAY "CC#DD#E"

Plays the first five half-steps of
the musical scale.

Copyright 1988 Burke & Burke Page A-60

e

P

RSB User's Manual Version 1.0
PMODE Set Low-Res Graphics Mode
Syntax:

PMODE [model{ ,page]
Function:

Selects a low-res graphics mode and
graphics screen number.

Parameters:

mode Determines the effective screen
resolution and number of colors
for low-res graphics. Must be
in the range 0-4. Defaults to
the most recently used mode.

page The page number of a 1.5K
graphics page. The low-res
screen containing this graphics
page becomes the active low-res
graphics screen.

Notes:

PMODE and other low-res graphics
commands can be used on either VDG windows
or true windows. RSB automatically
converts low-res graphics commands executed
on true windows to the closest equivalent
hi-res graphics command. LINE commands are
converted to HLINE commands, and so on.

Some low-res graphics commands, like
GET, cannot be converted to an equivalent
hi-res command. For maximum compatibility
with DECB, you should run low-res graphics
programs in VDG windows instead of true
windows.

Copyright 1988 Burke & Burke Page A-61

RSB User's Manual Version 1.0

All VDG low-res graphics screens use 6K
of system memory. regardless of PMODE. RSB
allows vyou to specify graphics modes that
require less than 6K, but always converts
to the equivalent of PMODE 3 or 4 based on
the number of colors needed.

RSB uses HSCREEN 1 hi-res graphics when
emulating low-res graphics on true windows.

Example:
PMODE 4

Select 256 x 192, two~-color low-res
graphics.

Copyright 1988 Burke & Burke Page A-~-62

.

o

RSB User's Manual Version 1.0
PRINMNT @& Print at Screen Offset
Syntax:

PRINT Qoffsetlprint_list]
Function:

Move both the text cursor and the
print position to the specified offset
from the wupper left-hand corner of the
screen, and execute a PRINT command.

Parameters:

offset The desired cursor position,
given by (32 * row) + column.
Must be in‘the ranae 0-511.

print_list A list of printable items, as
described in CoCo 3 Extended

Color BASIC for the PRINT
- command. If omitted, only a

carriage return is printed.

Notes:

The PRINT @ command works on all 32,
40, and B0 column text screens. MNote that
only the first 32 columns and the first 16
rows can be accessed on 40 and 80 column
screens.

Example:
100 WIDTH 32
110 CLs
120 PRINT €269,"HELLO!"
Line 100 selects a 32 column text

sSCcreen.

Copyright 1988 Burke & Burke Page A-63

RSB User's Manual Version 1.0

Line 110 erases the text screen.
Line 120 moves the cursor to near the

center of the screen, and prints a text
message.

Copyright 1988 Burke & Burke Page A-64

o~

T

RSB User's Manual Version 1.0

FUT Place Low—-Res Graphic Rectangle
Syntax:
(PUT (sx.sy)-(ex,ey).,arrayl,action]
Function:

Copies an array to a rectangular area
of the low-res graphics screen.

Parameters:

Sx X-coordinate of one corner of
the rectangle, 0-255

sy Y-coordinate of one corner of
the rectangle, 0-191

ax X-coordinate of the opposite
diagonal corner of the

(rectangle, 0-255

ey Y-coordinate of the opposite
diagonal corner of the
rectangle, 0-191

array The name of a two-dimensional
array that stores the graphic
rectangle

action Selects one of several methods

to use when placing the
rectangle on the screen:

PSET FPlace stored image
PRESET Invert and place
AND Bit-wise AND

(" OR Bit-wise OR

- NOT Invert screeaen

L

Copyright 1988 Burke & Burke Page A-65

RSB User's Manual Version 1.0
Notas:

The PUT command generates a ?HR ERROR
when used on a true window.

when using GET and PUT together, you
must use the same PMODE for both the' GET
and the PUT.

See also GET.
Example:

100 DIM A(19.,2)
110 GET (0,0)-{19,2).,A
120 PUT (100,100)-{(119.,102),A

Line 100 declares an array big enough
to hold a 20 x 3 graphic rectangle. Note
that the DIM command reserves elements
beginning at subscript 0, so 1line 100
actually declares a 20 x 3 array.

Line 110 copies the 20 x 3 graphic
array described by the diagonal line from
{0,0)-(19,2) into array A.

Line 120 duplicates the original
ractangle at another screen location.

Copyright 1988 Burke & Burke Page A-66

o~

—

E— ST

RSB User's Manual Version 1.0

RENAME Rename a File
Syntax:
RENAME s_name TO d_name

Function:

This command changes the name of a
file.

Parameters:

§_name Original file name
d_name New file name
Notes:

RSB calls 08S9's RENAME wutility to do
the actual work.

Examples:
RENAME "TEST.BAS" TO "TEST.OLD"

Changes the name of TEST.BAS on the
default drive to TEST.OLD.

Copyright 1988 Burke & Burke Page A-67

RSB User's Manual Version 1.0
SOUND Make a Sound
Syntax:

SOUND pitch,length
Function:

Generates a tone.
Parameters:

pitch) Specifies the pitch of the
tone, 0-255

length Specifies the duration of the
tone, 0-255

Notes:

The pitch parameter is related to the

frequency of the sound by a simple
formula:
1 :
£ = ————— ;: B = 10,410 t; A = 40 t
B - Ap

t = 16 * (1/28,636,363) (bus cycle)

The duration of the sound is specified
in 1/15 second increments.

RSB uses SS.TONE service calls ¢to
process the SOUND command. Refer to the
description of the PLAY command for more
information about S$S.TONE.

Example:

SOUND 159,15

Copyright 1988 Burke & Burke Page A-68

o~

RSB User's Manwal Version 1.0

Produces a 440 Hz tone for 1 second.

Copyright 1988 Burke & Burke Page A-69

RSB User's Manual Version 1.0
TIXIMER Elapsed Time
Syntax:

TIMER
Function:

Return elapsed time
Return Value:

number, 0-65535

Notes:

The TIMER function recurns a value
that is incremented every 1/60 second.

RSB obtains the timer value by briefly
disabling interrupts, mapping 1in O059's
system variables, and accessing an area
maintained by the 059 CLOCK module. The
returned value is the system timer value
minus a programmable offset (see TIMER=).

Example:
100 A=TIMER
110 SOUND 100,15
120 PRINT TIMER-A

Line 100 reads the current timer value
and stores it in veriable A.

Line 1190 genarates a tone that lasts
4*15, or 60, timer increments.

Line 120 reads the timer value again,

calculates the elapsed time, and displays
the elapsed time.

Copyright 1988 Burke & Burke Page A-70

\”_“-\

T

RSB User's Manual Version 1.0

The elapsed time in this example will
usuvally just over 60 ticks: the length of

of the tone.,

plus some time for overhead.

Copyright 1988 Burke & Burke Page A-71

RSB User’'s Manual Version 1.0
TLIMER= Calibrate Timer
Syntax:

TIMER=time
Function:

Calibrate the TIMER funtion.
Parameters:

time The desired TIMER value, O0-
655135.

Notes:

The TIMER= command reads the system:
timer and calculates an offset that, when
subtracted from the timer value, produces
the number 'time'. RSB saves this offset
and subtracts it from the value of the
system timer when processing subsequent
uses of the TIMER function.

Example:
100 TIMER=~O
110 SOUND 100,15
120 PRINT TIMER

Line 100 calibrates the value of the
TIMER function toc zero.

Line 110 generates a tone that lasts
4*15, or 60, timer increments.

Line 120 reads the timer value again,
and displays it as the the elapsed time.

The elapsed time in this example will

Copyright 1988 Burke & Burke Page A-72

Pl

RSB User's Manual Version 1.0

usually just over 60 ticks: the length of
of the tone, plus some time for overhead.

Copyright 1988 Burke & Burke Page A-73

RSB User's Manual Version 1.0
WVERIFY Contrel Disk Verification
Syntax:

VERIFY {ON|OFF}

Function:

This command is provided for compati-
bility with DECB. It does not perform any
function under RSB.

Examples:

VERIFY OFF

This command is ignored.

Copyright 1988 Burke & Burke Page A-74

—
N

RSB User's Manual Version 1.0

WID'TH Set Text Screen Size
Syntax:

WIDTH {32)40{80}
Function:

Set the number of rows and columns on
the text screen:. and erase the screen.

Parameters:

32 Select 22 columns and 16 rows
40 Select 40 columns and 24 rows
80 select 80 columns and 24 rows
Noces:

The WIDTH command will not change the
type of a window. The window remains
either a true window or a VDG window.

WIDTH 40 and WIDTH 80 are not allowed
on VDG windows.

WIDTH 32, when used from a true window.,
creates a 32 % 16 text window centered in a
40 X 24 text screen. *
Example:

WIDTH 32

Sets up and clears a 32 x 16 text
screen.

Copyright 1988 Burke & Burke Page A-75

P

RSB Usear'

s Manual Version 1.0

Appendix B

M i v T —— e ar —— —— —— ——— o — - - -

i h o i ek s e ey T T —— i} oy ————— i . o

RSB Eror Code Summary

12
13
14
15

16
17
18
l9

Name Meaning

NF NEXT without FOR

SN Syntax error

RG RETURN without GOSUB
oD Out.of DATA

FC Illegal function call
ov Numeric overflow

oM Out of memory

UL No such program 1line
8s Bad subscript

DD Array redefined

/0 Division by zero

ID Illegal in direct mode
T™ Type mismatch

0s Out of string space
LS String tco long

ST String too complex
CN Can't continue

FD Bad file data

AO File already open

DN Bad device number

Copyrighf 1988 Burke & Burke Page B-1

RSB User's Manual

Code

20
21
22
23

24
25
26
27

28
29
30
3l

a2
33
34
35

36
37
38
39

Name

s an

IO
FM
NO
IE

DS
ufF
NE
BR

DF
OB
WP
FN

FS
AE
FO
SE

VF
ER
HR
HP

Version 1.0

Meaning

A T — ——— i AL ke ke e o o e A bk e o o o

Generic I/0 error
File mode error
File not open
End-of-~file

Not allowed in RUN mode
Undefined function

No such file

Illegal recerd number

Disk full

Out of buffer space
Write protect
Illegal file name

Corrupt file system
File already exists
Field overflow

SET without FIELD

Write verify failed
End-of-raecord

Hi~-res graphics error
Hi-res text error

Copyright 1988 Burke & Burke Page B-2

e

RSB User's Manual Version 1.0

OS5 9 Error Translation

RSB uses the same error codes and error
messages as Disk Extended Color BASIC. When
RSB receives an error code from 0S9, it
converts the error code to a standard BASIC
code.

059 error #002 is converted to a BREAK

condition. If your program has executed
an ON BRK command, RSB will transfer
control to the BREAK service routine

whenever 1t receives error code #002.

089 errors lower than ESICoord (189)
are converted to BASIC ?FC ERROR (code
4) errors.

0s9 8rrors between ESICoord and
EsWUndef are converted to BASIC 7?HR ERROR
(code 38) errors.

The Table shows how other 0S9 error
codes are convarted into BASIC error codes.
Error codes not mentioned above, and not
listed in the Table, produce a BASIC 3?10
ERROR {(code 20) error.

Copyright 1988 Burke & Burke Page B-3

RSB User's Manual Version 1.0

059 Error Code BASIC Error Code
ESPoOll 196 ?0M ERROR [
ESNoTask 239 70M ERROR 6
ESNoRAM 217 ?70M ERROR 6
ESPrcFul 229 ?20M ERROR 6
ESMemFul 207 ?0M ERROR 6
ESPthFul 200 70M ERROR &
ESDevOve 204 ?0M ERROR &
ESDirFul 206 70M ERROR 6
ESNEMod 234 ?NE ERROR 26
ESMNF 221 : ?NE ERROR 26
ESPNNF 216 7NE ERROR 26
ESSeek 247 ?FS ERROR 32
ESIBA 219 ?2FS ERROR 32
ESNES 213 ?F5 ERROR 32
ESBNam 235 ?FN ERROR 31
ESBPNam 215 ?FN ERROR 31
ESFNA 214 7FM ERROR 21
ESBMode 2013 ?FM ERROR . 21
ESEOF 211 ?IE ERROR 23
ESCEF 218 7AE ERROR 33
ESUnkSvC 208 ?FC ERROR 4
EsUnit 240 ?DN ERROR 19
ESBPNum 201 ?DN ERROCR 19
ESWP 242 ?WP ERROR 30
ESFull 248 ?DF ERROR 28
ESBMHP 236 2FD ERROR 17
ESBMCRC 2132 7FD ERROR 17
ESBMID 205 ?FD ERROR 17

Copyright 1988 Burke & Burke Page B-4

L

TN

P

RSB User's Manual Version 1.0

Appendix C

Everybody's Color Computer 3 setup is
unique. For example, some people have RGB
monitors, while others have composite
monitors or television sets.

RSB stores information about your CoCo

system in a special environment file. RSB
checks this file every time you use the RSB
software, in case you've added new

equipment or otherwise changed the system.

File Formatc

The environment file is an ordinary
text file. Each line of the file tells RSB
something about your system -- such as what
type of monitor you have.

Lines that begin with an asterisk (*)
are ignored by RSB. You can use this type
of line as a comment, to remind yourself of
what other lines do.

Blank 1lines are also ignored. Use
blank lines to make the file more readable.

Here's a 1listing of the standard RSB
environment file:

Copyright 1988 Burke & Burke Page C-1

RSB User's Manual Version 1.0
* RSB Environment File

* Printer device path name (defaults to
* nocne). Use "#" or "/NIL" for default.

/p

* Cassette path name {defaults to none).
Use "#" or "/NIL" for default ‘

»

#

* Sound device path name (defaults to

* standard output}. Use "#" for default
#

* Monitor type -- RGB or COMPOSITE.

* Only the first character is significant
COMPOSITE

* Default screen width. Must be 32, 40,
*® or 80. Illegal values default to 80.
* This value is ignored in VDG windows.

* Right joystick type -- MOUSE or

* JOYSTICK. Only the first character
* is significant

JOYSTICK

* Default path names for directories
» 6, 1, 2, and 3. Must be full 059
" path names. These default to "no
* path"”. Use "#" for default

*

/30

/d1

/d2

/d3

* End of rsb_env.file

Copyright 1988 Burke & Burke Page C-2

P

L

RSB User's Manual Version 1.0

Search Path

The RSB environment file is always named
rsb_env.file- RSB searches for this file in
two different places:

1) /dd/8YS/rsb_env.file

2) /d0/8YS/rsb_env.file
/dd is 0S9's "default device"; it may be a
floppy disk. hard disk, or RAM disk. RSB

checks /dd first, in case your system is
using a hard disk or other alternative
primary storage. If there is no device named
/dd, or there is no RSB environment file on
that device, RSB will look for the
environment file on device /d0.

RSB should not be used without the
RSB environment file.,

Copyright 1988 Burke & Burke Page C-3

RSB User's Manual Version 1.0

Appendix D

——— ——— — ——— T ——— T AL dimk i i deoy. . TR P S . ————_ —

Programmer' s MNotes

This Appendix describes some of the
inner workings of RSB. This information is
provided for the benefit of advanced BASIC
or machine language programmers.

I'mternal Operation

RSB is implemented as an overlay that
modifies Disk Extended <Color BASIC. The
overlay changes all absolute addressing in
the code segment into relative addressing.,
and modifies all of the I/0 routines to
perform OS9 system calls.

DECB alloates the 32 column text screen
at addresses 5400-S5FF, and stores several
CoCo 3 variables at addresses SFEOO-SFEFF.
This has been modified in RSB; the text
screen is allocated in 0S59's system memory,
and all references in the range $FEO0-SFEFF
have been relocated to $500-~$5FF. Several
new variables have been added in this area.

All other data references use absolute
or direct addressing. Level 2 059 always
allocates RAM to a process from $0000 up.
and RSB takes advantage of this when using
absolute addressing.

The low-resolution graphics routines
use S5.S51GBf and SS.AAGBf calls to allocate

Copyright 1988 Burke & Burke Page D-1

RSB User's Manual Version 1.0

and map VDG graphics buffers. The original
DECB routines perform all VDG graphics.
Note that the graphics buffers are mapped
into unused 8K slots in RSB's memory map.
and DO NOT use the RAM allocated to RSB for
program and variable storage.

High-resolution graphics wuse 0s9's
windowing system for most functions. For
example, the HPOINT function sends a GetBlk
command to the screen, uses SS.MpGPB to
map in the buffer, and then examines the
buffer to calculate the value of the
graphics point.

The scheme for accessing BASIC's
command tables has been modified slightly.
DECB for the CoCo 3 uses some very tricky
code to add new commands without using the
"spare" command table (address $13E-$147).
RSB uses the spare command table for these
commands .

RSB's new function, 059(a$). uses tocken
$28. This token was skipped in CoCO 3 DECB
due to the tricky command table code.

The path number of each open 059 device
is stored in the associated RSB file
control block, at offset FCBDRV (5$01). The
address of the file control block (FCB) for
device #) is stored in the two bytes at
location $926 + 2*j. This eqguation only
works for j >= 1.

RSB essentially ignores the four FAT
buffers from $800-~-$927, but portions of the
criginal DECB code may still access this
aresa when setting up FCBs, etc. It's best
to LEAVE THIS AREA ALONE and not try to
store ML subroutines or other data there.

Copyright 1988 Burke & Burke Page D-2

i

RSB User's Manual Version 1.0

RSB's memory map is similar to DECB,
with several important differences.

The most important difference is that
RSB's code segment is fully relocatable;
0S9 may load RSB at any address. USUALLY,
but not always, this address turns out to
be $6000. There are an extra five bytes at
the beginning of RSB, so address X in DECB
is equivalent to:

(X - &H7FFB) + RSB_load_address

in RSB. RSB stores its load address in the
two bytes at location $SEO.

The second major difference is in how
RSB and DECB allocate text / graphics
screens. RSB's 32 column text screen is
somewhere in ©059's system memory map, and
you can't use POKE commands or traditional
machine language routines to access it. VDG
graphics screens are allocated in unused 8K
slots of RSB's memory map, and do not use
any of RSB's original memory allcocation.

Here's how RSB Version 1.0 uses the
block of memory between $400 and SS5FF.
Future versions of RSB may use this block
differently, so USE THESE ADDRESSES AT YOUR
OWN RISK!

Copyright 1988 Burke & Burke Page D-3

RSB User's Manual Version 1.0

RSB System Variables
Copyright 1988 Burke & Burke
All Rights Reserved

* % » % »

‘org $400

x*

* The path name variables for drives 0-3
* All are <CR> terminated.
x
H

.DRIVEO «rmb 64
H.DRIVEl rmb 64
H.DRIVEZ2 rmb 64
H.DRIVE3 rmb 64

org $300
]
* Super Extended graphics variables
* Relocated to $§500
*
H.CRSLOC rmb 2
H.CURSX rmb 1
H.CURSY rmb 1l
H. COLUMN rmb 1
H.ROW rmb 1l
H.DISPEN rmb 2
H.CRSATT rmb 1
rmb 1l
H.FCOLOR rmb) 8
H.BCOLOR rmb 1
H.ONBRK rmb 2
H.ONERR rmb 2
» $510
H.ERROR rmb 1l
H.ONERRS rmb 2
H. ERLINE rmb 2
H.ONBRKS rmb 2
H. ERRBRK rmb 1

Copyright 1988 Burke & Burke Page D-4

——

T e

RSB User's Manual Version 1.0

H.PCOUNT rmb 1

H.PBUF rmb 80

* $569

* These are unique to RSB

Tk Current palette register settings
H.PALET rmb 16 '

* 32 byte "master" GetStt buffer

H.COCKED rmb 32

* 32 byte “"working" GetStt buffer

H.RAW rmb 32

* $00 or value of captured signal
H.BREAK rmb 1

* $5BA

* Path table. An entry of SFF = device
» closed. Otherwise, the entry is the
* number of the open path. Files are

* handled by storing the path number in
* the file control block.

H.Sound rmb 1 :Sound I/0 path
H.PRNTR rmb 1 :Printer I/O path
H.CASS10O rmb 1 ;Cassotte I/0 path
* $00 if composite, SFF if RGB monitor
H.MonTp rmb 1

* $00 if right joystick. SFF if mouse
H.JoyTp rmb 1

* Window type (300 = VDG, SFF = window)
H.WTYPE rmb 1

* S$5CO0

* Table of PD.TYP device type for open
* "files" i

H.DTTBL rmb 16

* $5D0

Copyright.1988 Burke & Burke Page D-5

RSB User's Manual Version 1.0

*

Hl

*
*

H.

L]

H.

*

H.

*

H.

*

H.

*

H.

*

H.

L

H.

®

H.

*

H.

*

H.

*

H.

*
*

H

®

Address of text screen ($00 if none)
TSCRN rmb 2

Displayed screen 500 = text

SFF = graphics

ScTyp rmb 1l

Address of graphics screen #0
sScrnd rmb 2 '

Address of graphics screen #1
Scrnl rmb 2

Stored 0S9 error code (sometimes)
OS9ER rmb 1

SFF if '~q' specified, else 500
GFLAG rmb 1

Background palette # for 32 column text
TBK32 rmb 1

Border palette for 40 or 80 column text
TXTBD rmb 1

0ld foreground color

OLDFGC rmb 1l

0ld background color
OLDBGC rmb . 1l

RSB's Process ID (for graphics buffers)
PID rmb 1l

PMODE promotion ($FF = emulate VDG)
PROMO rmhb 1

Stashed device #
DEVNUM rmb 1

SSEQ

L.oad address of RSB
-BASE rmb 2

Spare out to $5ED

Copyright 1988 Burke & Burke Page D-6

T

RSB User's Manual Version 1.0

*

Copyright 1988 Burke & Burke

*

* More variables -- uses from here
* to end of $500 page

n

‘ org S5ED

* $55 1f interrupt vectors valid:;
* else $00

INT.FLG rmb 1

end of variables.equ

Page D-7

RSB User's Manual Version 1.0

Cassetcce Format

Cassette I/0 is handled by calling an
SCF device driver designated in the
environment file.

Any device may be designated as the
cassette device, but the data stream from
that device must use the cassette format.

A full description of the cassette data
format is given in Tandy's Color Computer 3
service manual, catalog #26-3334. Here's a
summary:

FILE = LEADER (128 bytes $55)
NAME BLOCK
LEADER (128 bytes $55)
DATA BLOCKS
END OF FILE BLOCK

BLOCK = LEADER BYTE ($55%)
SYNC BYTE ($3C)
BLOCK TYPE BYTE
S00=name .,
s$O0l=daca
SFF=end of file
BLOCK LENGTH {$00-SFF)
DATA
CHECKSUM BYTE
all but leader & sync
TRAILER BYTE (555)

DATA (name block only) =
NAME (8 bytes)
TYPE
$00 = BASIC
$01 = pata
$02 = ML
ASCII FLAG

Copyright 1988 Burke & Burke Page D-8

T e,

RSB User's Manual Version 1.0

$00 = Binary

SFF = ASCII
GAP FLAG

$01 = Continuous

SFF = Gaps
ML PROGRAM START ADDRESS
ML, PROGRAM LOAD ADDRESS

The length of an end-of-file block is
always 0.

Copyright 1988 Burke & Burke Page D-9

—
'

RSB User's Manual Version 1.0

Appendix E

e ———————————— .} i o . w—— —————— — i ——— T ——————

Os 9o Utilities

o e o o e e . ey e e ke A R o ey T S S S G Sat Mo M M — —————

HCOPY

Syntax: HCOPY [-option] b_path o_path
HCOPY [-option] o_path b_path

Function: Copy @ file between the 059 and
BASIC directories of a SKITZO
disk. ‘

Parameters:

option Used to force the type of files
written to the BASIC directory.

-0 BASIC program
-1 BASIC data file
-2 BINARY

-3 TEXT file

-4 ASCII BASIC

b_path Identifies the BASIC file name.,
as in HDEL. '

o _path 059 file path name.

Notes:

HCOPY copies files between BASIC and

Copyright 1988 Burke & Burke Page E-1

RSB User's Manual Version 1.0
059 directories.

HCOPY accepts two filenames on the
command line. The left-most filename is
the source file, and the right-most
filename is the destination file.

When copying from BASIC to 059, HCOPY
always creates an 059 text file.

wWhen copying from 059 to BASIC, the
type of the destination file is determined
by the filename suffix, as follows:

.BAS BASIC program

«.DAT BASIC data file

.BIN BINARY (machine language)
«TXT TEXT file

«ASC ASCII-format BASIC program

Files with no suffix or with suffixes not
listed above become BASIC data files.

You can force the type of the file.,
regardless of suffix, via the -0, -1, -2,
-3, and -4 options.

Example:

089:dir /do

Directory of /dl 22:39:03
memo.tXxt

059:hdir %dl

HDIR VERSION 2.5

COPR. 1988 BY BURKE & BURKE

Name Type F 8Size

Copyright 1988 Burke & Burke Page E-2

T

RSB User's Manual Version 1.0

DISKDUMP .BAS BASIC B 96
XTFMT.BIN BINARY B 1108
CONFIG.BAS BASIC B 154

2304 bytes per granule.
3 granules used.

65 granules available.
149760 bytes available.

0S9:hcopy /d0/memo.txt %dl/NEWMEM.TXT
HCOPY VERSION 2.0
COPR. 1988 BY BURKE & BURKE

059:hdir %dl
HDIR VERSION 2.0
COPR. 1988 BY BURKE & BURKE

Name Type F ©Size

DISKDUMP . BAS BASIC B 96
XTFMT.BIN BINARY B 1108
NEWMEM . TXT TEXT A 26224
CONFIG.BAS BASIC B 154

2304 bytes per granule.
15 granules used.

53 granules available.

122112 bytes available.

0s89:

Copyright 1988 Burke & Burke Page E-3

RSB User's Manual Version 1.0

HDIR

sSyntax: HDIR device

Function: Display BASIC directory of
SKITZO floppy disk.

Parameters:

device The device name of the floppy
drive containing the disk: with
a % in place of the leading /.

Notes:

HDIR displays the BASIC directory of a
disk that has been processed by the SKITZO
command .

The directory shows the name and type
of each file, and its size in bytes. The
granule size and number of free granules
are displayed at the end of the directory.

Example:
059:hdir %dl

HDIR VERSION 2.5
COPR. 1988 BY BURKE & BURKE

Name Type F Size
HYPER2-1.BIN BINARY B 2979
HYPERIQO.BAS BASIC B 1010

Copyright 1988 Burke & Burke Page E-4

{

—

RSB User's Manual Version 1.0

CNFBIN.BIN BINARY B
HYPERDRV.BIN BINARY B
DISKDUMP .BAS BASIC B
XTFMT.BIN BINARY B
FR.DR BINARY B
J1.DD BINARY B
HDFMT.BAS BASIC B
CNFTOOL - BAS BASIC B
MSATOOL . BAS BASIC B
OS9IFY.BAS " BASIC B
XT.DR BINARY B
H8 .DD) BINARY B
HO.DD BINARY B
HYPERDEV.BIN BINARY B
CONFIG.BAS BASIC B

2304 bytes per granule.
66 granules used.

2 granules available.
4608 bytes available.

0s9:

2495
1002
96
1108
117
32
3859
16751
6243
4765
849
32
32
193
154

Copyright 1988 Burke & Burke

Page E-5

RSB User's

HDEL

Syntax:

Function:

Parameters:

b_path

Notes:

Manual Version 1.0

HDEL b_path

Daelete a file from the BASIC
directory of a SKITZO disk.

Identifies the file to be
deleted. The format of path is

device/file_spec
device is defined as with HDIR.
The file_spec is the name of
the file to be deleted, in

BASIC format. Upper and lower
case are distinct.

b_path example:

$dl/TEST.BAS

HDEL deletes a file from the BASIC
directory of a SKITZO disk.

Any granules used by the file become

available
utility.

Example:

to both BASIC and the HCOPY

Copyright 1988 Burke & Burke Page E-6

RSB User's Manual Version 1.0

0S9:hdel %d1,/J1.DD
HDEL VERSION 2.5
COPR. 1988 BY BURKE & BURKE

0s59:

Copyright 1988 Burke & Burke Page E-7

RSB User's Manual Version 1.0
SKITZO

Syntax: SKITZO device

Function: Divides a newly formatted disk
into 059 and RS-~DOS sections.

Parameters:

device The name of the floppy device

that holds the disk to

divided.

Notesﬁ

be

SKITZO works only on 35 track, single

sided floppy disks.

Tracks 0-16 are allocated to 059,
tracks 17-34 are allocated to BASIC.

The 059 and RS-DOS sections
completely independent. writing to
section does not alter the other.

and

are
one

The main use of SKITZO is to prepare a
disk for subsequent use with HDEL, HDIR, or

HCOPY.

Example:

Os59:skitzo /40

Copyright 1988 Burke & Burke Page E-8

.

RSB User's Manual Version 1.0
WIDTH

Syﬁcax: WIDTH {32]|40|80}
Function: Change 059 screen width

Paramecers:

32 Select 16 lines, 32 columns

40 Select 24 lines, 40 columns
80 Select 24 lines, 80 columns
Notes:

The WIDTH utility redefines the size of
the current window. This command has no
effect when used from a VDG window.

WIDTH uses palette register 0 as the
foreground color, and palette register 10 as
the background color.

The cursor will match palette register 1
when typing new text, and will match palecte
register 0 when typing over existing text
{(e.g. due to the <- and CNTL-A keys).

Copyright 1988 Burke & Burke Page E-9

